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Abstract— This paper analyzes the multiplexing gains (MG)
for simultaneous transmission of delay-sensitive and delay-
tolerant data over interference networks. In the considered
model, only delay-tolerant data can profit from coordinated
multipoint (CoMP) transmission or reception techniques, because
delay-sensitive data has to be transmitted without further delay.
Transmission of delay-tolerant data is also subject to a delay
constraint, which is however less stringent than the one on delay-
sensitive data. Different coding schemes are proposed, and the
corresponding MG pairs for delay-sensitive and delay-tolerant
data characterized for Wyner’s linear symmetric network and for
Wyner’s two-dimensional hexagonal network with and without
sectorization. Information-theoretic converses are established for
these models. For Wyner’s linear symmetric network the bounds
match whenever the cooperation rates are sufficiently large or the
delay-sensitive MG is small or moderate. These results show that
on Wyner’s symmetric linear network and for sufficiently large
cooperation rates, the largest MG for delay-sensitive data can
be achieved without penalizing the maximum sum-MG of both
delay-sensitive and delay-tolerant data. Our achievable schemes
show that a similar conclusion holds for Wyner’s hexagonal
network only for the model with sectorization. In the model
without sectorization, a penalty in sum-MG is incurred whenever
one insists on a positive delay-sensitive MG

Index Terms— Multiplexing gains (MG), mixed delay con-
straints, delay tolerant coordinated processing.

I. INTRODUCTION

ONE of the main challenges for future wireless com-
munication systems is to accommodate heterogeneous

data streams with different delay constraints. This is also the
focus of various recent works, notably [1]–[7]. In particu-
lar, [1], [2] study a cloud radio access network (C-RAN)
under mixed-delay-constraints traffic. Specifically, users close
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to base stations (BS) transmit delay-sensitive data, which
is directly decoded at the BSs, and users that are further
away send delay-tolerant data, which is decoded at the cen-
tral processor. In this paper we refer to delay-tolerant data
as “slow” messages, and to delay-sensitive data as “fast”
messages. In [4], we extended above C-RAN models to allow
each user to send both “fast” and “slow” messages, and to
time-varying fading channels. The results in [4] show that
at any “fast” rate, the stringent delay constraint on “fast”
messages penalizes the overall performance (sum-rate) of the
system.

The work in [5] proposes a superposition approach over
a fading channel to communicate “fast” messages within
single coherence blocks and “slow” messages over multiple
blocks. In [6] a scheduling algorithm is proposed for a K-user
broadcast network that gives preference to the communication
of “fast” messages over “slow” messages. A related work was
performed in [7], where “fast” messages can be stored in a
buffer during a single scheduling period.

The focus of the current work is on the benefits of coopera-
tion for mixed-delay traffics, assuming that only the transmis-
sions of “slow” messages can profit from cooperation between
terminals, but not “fast” messages. Networks with transmitter-
(Tx) and/or receiver- (Rx) cooperation have been considered
in many recent works including [8]–[18], [40] but mostly
only with a single type of messages, namely the messages
that we call “slow” messages. Huleihel and Steinberg [8]
considered two types of messages: one type that has to be
decoded whether or not the Rx-cooperation link is present, and
the other that only has to be decoded when the cooperation
link is present. Inspired by this model, we studied Wyner’s
soft-handoff model [22], [23] with mixed-delay traffics in [19],
where the Tx-cooperation messages can only depend on the
“slow” messages in the system and not on the “fast” messages,
and “fast” messages have to be decoded prior to the Rx-
cooperation phase, whereas “slow” messages can be decoded
thereafter. Moreover, in [19] the total number of Tx- and Rx-
cooperation rounds is constrained also for the “slow” messages
as proposed [18]. The problem setup that we consider in
this paper is different from the setups in [9]–[18] as each
Tx wishes to send both “fast” and “slow” messages, and is
different from the setup in [19] as it covers networks with
arbitrary interference graphs whereas in [19], we focus on
Wyner’s soft-handoff model where the signal sent by each
transmitter interferes only the observed signal by the receiver
to its right. The results in [19] show that, in the high signal to
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noise ratio (SNR) regime, when both the Txs and the Rxs can
cooperate, and for sufficiently large cooperation rates, it is
possible to accommodate the largest possible rate for “fast”
messages without penalizing the maximum sum-rate of both
“fast” and “slow” messages. When only Txs or only Rxs can
cooperate, transmitting also “fast” messages causes no penalty
on the sum-rate at low “fast” rates, but the sum-rate decreases
linearly at high “fast” rates. Notice that the standard approach
to combine the transmissions of “slow” and “fast” messages is
to time-share (schedule) the transmission of “slow” messages
with the transmission of “fast” messages. In this approach,
the sum-rate decreases linearly with the rate of the “fast”
messages and attains the maximum sum-rate only when no
“fast” messages are transmitted.

The focus of this paper is on the pairs of Multiplexing
Gains (MG), also called degrees of freedom or capacity
prelogs, that are simultaneously achievable for “fast” and
“slow” messages. We propose a general coding scheme for
any interference network with Tx- and Rx-cooperation that
simultaneously accommodates the transmissions of “slow”
and “fast” messages, and characterize their achievable MG
pairs for two specific cellular network models: Wyner’s linear
symmetric model [22], [23] and Wyner’s two-dimensional
hexagonal model [22] with and without sectorization. In
Wyner’s linear symmetric model, cells are aligned in a line
and interference is short range, so that transmissions in a cell
are interfered only by transmissions from the two neighbouring
cells. Such a model is adequate for systems deployed along
highways, railroads or long corridors, see also [38]. In Wyner’s
two-dimensional models, cells are of hexagonal shapes and
transmissions in a cell are interfered by the transmissions
in the six neighbouring cells. Sectorization occurs in this
model if the BS employs directional antennas pointed to
three different directions, so that transmissions in these sectors
do not interfere. The hexagonal models are adequate for
systems where BSs are spread in two dimensions. For all three
considered models, in this paper we assume that the various
users of the same cell are scheduled in different frequency
bands. Interference thus occurs only from the mobile users in
neighbouring cells that are scheduled on the same frequency
band.

We establish information-theoretic converses for all three
models. For Wyner’s symmetric network the converse bound
matches the proposed set of achievable MG pairs when the
cooperation links are of sufficiently high prelogs or when
the MG of “fast” messages is small. These results show that
when the prelog of the cooperation links is sufficiently large,
for Wyner’s linear symmetric model, as for Wyner’s linear
soft-handoff model [19], it is possible to accommodate the
largest possible MG for “fast” messages without penalizing
the maximum sum MG of both “fast” and “slow” messages.
Our achievable schemes suggest that the same also holds
for the sectorized hexagonal model considered in this paper
where each cell is divided into three non-interfering sectors by
employing directional antennas at the BSs [30]. In contrast, for
the considered non-sectorized hexagonal model, there seems
to be a penalty in maximum sum MG whenever the “fast” MG
is larger than 0.

To achieve the described performances, we propose a novel
coding scheme where we assign “fast” and “slow” messages to
different sets of transmitters in a way that “fast” transmissions
are interfered only by “slow” transmissions. Then we use
precoding and successive interference cancellation techniques
to transmit each of the “fast” messages at full MG without dis-
turbing the transmission of “slow” messages. The transmission
of “slow” messages can benefit from cooperation by applying
CoMP reception/ transmission in small subnets to jointly
decode/encode the “slow” messages at different Rxs/Txs. More
specifically, in our coding scheme, we identify a set of the Txs
whose signals do not interfere. The chosen Txs send “fast”
messages and the others send “slow” messages or nothing.
Communication of “fast” messages is thus only interfered by
transmissions of “slow” messages and this interference can be
described during the Tx-conferencing phase and precanceled
at the “fast” Txs. Also, “fast” Rxs decode their messages
immediately and can describe their decoded messages during
the Rx-conferencing phase to their adjacent “slow” Rxs allow-
ing them to subtract the interference from “fast” messages
before decoding their own “slow” messages. As a result,
“fast” messages can be decoded based on interference-free
outputs and moreover, they do not disturb the transmission of
“slow” messages. CoMP transmission or reception [20], [21]
for limited clusters is then employed to convey the “slow”
messages.

A. Organization

The rest of this paper is organized as follows. We end
this section with some remarks on notation. The following
Sections II and III consider general interference networks and
describe the problem setup and the proposed coding scheme
and its multiplexing gain region for such a general network.
Sections IV–VI specialize the results to the symmetric linear
Wyner model and to the two-dimensional hexagonal Wyner
model. Section VII concludes the paper.

B. Notation

We use the shorthand notations Rxfor “Receiver” and Tx for
“Transmitter”. The set of all integers is denoted by Z, the set
of positive integers by Z

+ and the set of real numbers by R.
For other sets we use calligraphic letters, e.g., X . Random
variables are denoted by uppercase letters, e.g., X , and their
realizations by lowercase letters, e.g., x. For vectors we use
boldface notation, i.e., upper case boldface letters such as X
for random vectors and lower case boldface letters such as x
for deterministic vectors.) Matrices are depicted with sans serif
font, e.g., H. We use [K] to denote the set {1, . . . , K}. We also
write Xn for the tuple of random variables (X1, . . . , Xn) and
Xn for the tuple of random vectors (X1, . . . ,Xn).

II. PROBLEM DESCRIPTION

Consider a cellular interference network with K cells each
consisting of one Tx/Rx pair. Txs and Rxs are equipped with L
antennas and we assume a regular interference pattern except
at the network borders. As an example, Fig. 1 shows Wyner’s
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Fig. 1. Wyner’s symmetric network. Black dashed arrows show interference links and purple arrows cooperation links.

symmetric network where the interference pattern is depicted
with black dashed lines.

Each Tx k ∈ [K] sends a pair of independent messages
M

(F )
k and M

(S)
k to Rx k ∈ [K]. The “fast” message M

(F )
k is

uniformly distributed over the set M(F )
k � {1, . . . , �2nR

(F )
k �}

and needs to be decoded subject to a stringent delay constraint,
as we explain shortly. The “slow” message M

(S)
k is uniformly

distributed over M(S)
k � {1, . . . , �2nR

(S)
k �} and is subject to

a less stringent decoding delay constraint. Here, n denotes the
blocklength of transmission and R

(F )
k and R

(S)
k the rates of

transmissions of the “fast” and “slow” messages.
We consider a cooperation scenario where neighbouring Txs

cooperate during DTx > 0 rounds and neighbouring Rxs during
DRx > 0 rounds. The total cooperation delay is constrained:

DTx + DRx ≤ D, (1)

where D ≥ 0 is a given parameter of the system and the values
of DTx and DRx are design parameters and can be chosen
arbitrary such that (1) is satisfied.

To describe the encoding at the Txs, denote by NTx(k) the
set of all Txs that have a direct cooperation link with a given
Tx k ∈ [K]. We refer to NTx(k) as the Tx-neighbouring set of
Tx k. Neighbouring Txs can communicate to each other during
DTx > 0 rounds, where this communication can only depend
on “slow” messages but not on “fast” messages. In each con-
ferencing round j ∈ {1, . . . , DTx}, Tx k sends a cooperation

message T
(j)
k→�

(
M

(S)
k ,

{
T

(1)
�′→k, . . . , T

(j−1)
�′→k

}
�′∈NTx(k)

)
to Tx �

if � ∈ NTx(k). The cooperation communication is assumed
noise-free but rate-limited:

DTx∑
j=1

H(T (j)
k→�) ≤ μTx ·

n

2
log(P), k ∈ [K], � ∈ NTx(k), (2)

for a given Tx-conferencing prelog μTx > 0 and where H(·)
denotes the entropy function and P > 0 is the average block-
power constraint.

Tx k computes its channel inputs Xn
k =

(Xk,1, . . . , Xk,n) ∈ R
L×n as a function of its “fast”

and “slow” messages and of the DTx|NTx(k)| obtained
cooperation messages:

Xn
k = f

(n)
k

(
M

(F )
k , M

(S)
k , {T (1)

�′→k, . . . , T
(DTx)
�′→k}�′∈NTx(k)

)
. (3)

The channel inputs have to satisfy the average block-power
constraint almost surely:

1
n

n∑
t=1

||Xk,t||2 ≤ P, ∀ k ∈ [K]. (4)

To describe the decoding, denote the Rx-neighbouring set
of a given Rx k ∈ [K], i.e., the set of all receivers that can
directly exchange cooperation messages with Rx k, by NRx(k).
Also, define the interference set Ik as the set of all Txs whose
signals interfere at Rx k.

Decoding takes place in two phases. During the fast-
decoding phase, each Rx k decodes its “fast” message M

(F )
k

based on its channel outputs Yn
k = (Y k,1, . . . , Y k,n) ∈ RL×n,

where

Yn
k = Hk,kXn

k +
∑
k̂∈Ik

Hk̂,kXn
k̂

+ Zn
k , (5)

and Zn
k,k is i.i.d. standard Gaussian noise, and the fixed

L-by-L full-rank matrix Hk̂,k models the channel from Tx k̂
to the receiving antennas at Rx k. So, Rx k produces:

M̂
(F )
k = g

(n)
k

(
Yn

k

)
, (6)

using some decoding function g
(n)
k on appropriate

domains. In the subsequent slow-decoding phase,
each Rx k ∈ [K] sends a conferencing message

Q
(j)
k→�

(
Yn

k ,
{
Q

(1)
�′→k, . . . , Q

(j−1)
�′→k }�′∈NRx(k)

})
during

cooperation round j ∈ {1, . . . , DRx} to Rx � if � ∈ NRx(k).
The cooperative communication is noise-free, but rate-limited:

DRx∑
j=1

H(Q(j)
k→�) ≤ μRx ·

n

2
log(P), k ∈ [K], � ∈ NRx(k), (7)

for given Rx-conferencing prelog μRx > 0. Each Rx k decodes
its desired “slow” message as

M̂
(S)
k = b

(n)
k

(
Yn

k ,
{
Q

(1)
�′→k, . . . , Q

(DRx)
�′→k

}
�′∈NRx(k)

)
, (8)

using some decoding function b
(n)
k on appropriate domains.

Throughout this article we assume short range interference
and thus:

Ik ⊆ (NRx(k) ∩ NTx(k)). (9)

Given power P > 0, maximum delay D ≥ 0, and cooper-

ation prelogs μRx, μTx ≥ 0, average rates (R̄(S)
K (P), R̄(F )

K (P))

are called achievable, if there exist rates {(R(F )
k , R

(S)
k )}K

k=1

satisfying

R̄
(F )
K :=

1
K

K∑
k=1

R
(F )
k , and R̄

(S)
K :=

1
K

K∑
k=1

R
(S)
k , (10)
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and encoding, cooperation, and decoding functions for these
rates satisfying constraints (1), (2), (4), and (7) and so that the
probability of error

p(error) � P

[ ⋃
k∈[K]

((
M̂

(F )
k 
= M

(F )
k

)
∪
(
M̂

(S)
k 
= M

(S)
k

))]
(11)

tends to 0 as n goes to ∞.
An MG pair (S(F ), S(S)) is called achievable, if for every

positive integer K and power P > 0 there exist achievable
average rates {R̄(F )

K (P), R̄(S)
K (P)}P>0 satisfying

S(F ) � lim
K→∞

lim
P→∞

R̄
(F )
K (P)

1
2 log(P)

, (12a)

S(S) � lim
K→∞

lim
P→∞

R̄
(S)
K (P)

1
2 log(P)

. (12b)

The closure of the set of all achievable MG pairs
(S(F ), S(S)) is called optimal MG region and denoted
S�(μTx, μRx, D).

Remark 1: In (12a), we let K → ∞ to remove the bound-
ary effects. The coding scheme proposed in the following
Section III can be implemented for arbitrary values of K .

III. CODING SCHEMES AND ACHIEVABLE

MULTIPLEXING GAINS

We describe various coding schemes that
either transmit both “fast” and “slow” messages
(Subsections III-A and III-B) or only “slow” messages
(Subsection III-C), and a scheme that does not use any kind
of cooperation (Subsection III-D).

An important building block in our coding schemes is
CoMP transmission or CoMP reception. Depending on which
of the two is used, the scheme requires more Tx- or Rx-
cooperation rates. So, depending on the application, any of the
two can be advantageous. In some applications, cooperation
rates might however be too low to employ either of the two.
In this case, the proposed schemes can be time-shared with
alternative schemes that require less or no cooperation rates at
all. Alternatively, the proposed schemes can be employed with
a smaller number of cooperation rounds D′ < D, which also
reduces the required cooperation prelog in all our schemes.

A. Coding Scheme to Transmit Both “Fast” and “Slow”
Messages With CoMP Reception

Split the total number of conferencing rounds between
Tx- and Rx-conferencing as:

DTx = 1 and DRx = D − 1. (13)

1) Creation of Subnets and Message Assignment: Each
network is decomposed into three subsets of Tx/Rx pairs,
Tsilent, Tfast and Tslow, where

• Txs in Tsilent are silenced and Rxs in Tsilent do not take
any action.

• Txs in Tfast send only “fast” messages. The corresponding
Txs/Rxs are called “fast”.

• Txs in Tslow send only “slow” messages. The correspond-
ing Txs/Rxs are called “slow”.

We choose the sets Tsilent, Tfast, and Tslow in a way that:
• the signals sent by the “fast” Txs do not interfere; and
• silencing the Txs in Tsilent decomposes the network into

non-interfering subnets such that in each subnet there
is a dedicated Rx, called master Rx, that can send a
cooperation message to any other “slow” Rx in the same
subnet in at most

⌊
DRx−1

2

⌋
cooperation rounds.

For example, consider Wyner’s symmetric model (described
in detail in Section IV) where Txs and Rxs are aligned on a
grid and cooperation is possible only between neighbouring
Txs or Rxs. Interference at a given Rx is only from adjacent
Txs. The network is illustrated in Figure 2. This figure also
shows a possible decomposition of the Tx/Rx pairs into the
sets Tsilent (in white), Tfast (in yellow) and Tslow (in blue) when
D = 6. The proposed decomposition creates subnets with 7
active Tx/Rx pairs where the Rx in the center of any subnet
(e.g. Rx 4 in the first subnet) can serve as a master Rx
as it reaches any slow (blue) Rx in the same subnet in at
most �DRx − 1/2� = �(D − 2)/2� = 2 cooperation rounds.
As required, transmissions from “fast” (yellow) Txs are only
interfered by transmissions from “slow” (blue) Txs.

2) Precanceling of “Slow” Interference at “Fast” Txs:
Any “slow” Tx k′ quantizes its pre-computed input signal
Xn

k′ (how this signal is generated will be described under
item 5)) and describes the quantised signal X̂n

k′ during the
last Tx-cooperation round to all its neighbouring “fast” Txs,
which then precancel this interference on their transmit signals.
(Here, there is only a single Tx-cooperation round, but this
item will be reused in later subsections where DTx > 1.)
Fig. 2 illustrates the sharing of the described quantization
information with neighbouring “fast” Txs for Wyner’s sym-
metric model.

To describe this formally, for each k ∈ [K], we define the
“slow” interfering set

I(S)
k � Ik ∩ Tslow. (14)

Also, we denote by Un
k (M (F )

k ) the non-precoded input
signal precomputed at a given “fast” Tx k. (The following
item 3) explains how to obtain Un

k (M (F )
k ).) Tx k sends the

inputs

Xn
k = Un

k (M (F )
k ) −

∑
k′∈I(S)

k

H−1
k,kHk′,kX̂

n

k′ , (15)

over the channel. Since each “fast” Rx k is not interfered by
the signal sent at any other “fast” Tx, the precoding in (15)
makes that a “fast” Rx k observes the almost interference-free
signal

Y n
k = Hk,kUn

k +
∑

k′∈I(S)
k

Hk′,k(Xn
k′ − X̂

n

k′) + Zn
k

︸ ︷︷ ︸
disturbance

, (16)

where the variance of above disturbance is around noise level
and does not grow with P.
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Fig. 2. Illustration of message assignment and cooperation in Wyner’s symmetric network. Master Rxs and Txs are in green patterns.

3) Transmission of “Fast” Messages: Each “fast” Tx k

encodes its desired message M
(F )
k using a codeword

U(n)
k (M (F )

k ) from a Gaussian point-to-point code of power
P. The corresponding Rx k applies a standard point-to-point
decoding rule to directly decode this “fast” codeword without
Rx-cooperation from its “almost” interference-free outputs
Yk, see (16).

4) Canceling “Fast” Interference at “Slow” Rxs: Accord-
ing to the previous item 3), all “fast” messages are decoded
directly from the outputs without any Rx-cooperation. During
the first Rx-cooperation round, all “fast” Rxs can thus share
their decoded messages with all their neighbouring “slow”
Rxs, which can cancel the corresponding interference from
their receive signals. More formally, we define the “fast”
interference set

I(F )
k � Ik ∩ Tfast (17)

as the set of “fast” Txs whose signals interfere at Rx k. Each
“slow” Rx k forms the new signal

Ŷ
n

k := Y n
k −

∑
k̂∈I(F)

k

Hk̂,kXn
k̂
(M̂ (F )

k̂
), (18)

and decodes its desired “slow” message based on this new
signal following the steps described in the following item 5).
Fig. 2 illustrates with yellow arrows the sharing of decoded
“fast” messages with neighbouring “slow” Rxs in Wyner’s
symmetric model.

5) Transmission and Reception of “Slow” Messages Using
CoMP Reception: Each “slow” Tx k encodes its message
M

(S)
k using a codeword Xn

k (M (S)
k ) from a Gaussian point-to-

point code of power P. “Slow” messages are decoded based
on the new outputs Ŷ

n

k in (18). CoMP reception is employed
to decode all “slow” messages in a given subnet. That means,
each “slow” Rx k applies a rate- L

2 log(1 + P) quantizer to the
new output signal Ŷ

n

k , and sends the quantization information
over the cooperation links to the master Rx in its subnet.
Each master Rx reconstructs all the quantized signals and
jointly decodes the “slow” messages, before sending them
back to their intended Rxs. By item 4) the influence of “fast”
transmissions has been canceled on the “slow” receive signals.

6) MG Analysis: In the described scheme, all transmitted
“fast” and “slow” messages can be sent reliably at MG L
because all interference is cancelled (up to noise level) either
at the Tx or the Rx side, and because Txs and Rxs are equipped
with L antennas each.

The presented coding scheme thus achieves the MG pair(
S(F ) = S

(F )
both, S(S) = S

(S)
both

)
, (19)

where

S
(F )
both � L · lim

K→∞

|Tfast|
K

and S
(S)
both � L · lim

K→∞

|Tslow|
K

. (20)

The scheme we described so far requires different coop-
eration rates on the various Tx- or Rx-cooperation links.
To evenly balance the load on the Tx-cooperation links and on
the Rx-cooperation links, different versions of the scheme with
different choices of the sets Tsilent, Tfast, and Tslow and different
cooperation routes can be time-shared. The main quantity of
interest is then the average cooperation load, which for the
scheme above is characterized as follows. During the single
Tx-cooperation round, each “fast” Tx k receives a quantised
version of the transmit signal of each of its “slow” interferers
k̂ ∈ I(S)

k . Since each quantisation message is of prelog L,
the average required Tx-cooperation prelog equals

μ
(r)
Tx,both � L · lim

K→∞

∑
k∈Tfast

|I(S)
k |

QK,Tx
, (21)

where QK,Tx denotes the total number of Tx-cooperation links
in the network.

There are three types of Rx-cooperation messages. In the
first Rx-cooperation round, each “slow” Rx k obtains a
decoded message from each of its “fast” interferers k̂ ∈ I(F )

k .
The total number of messages sent in this first round is thus∑

k∈Tslow
|I(F )

k | and each is of prelog L. In Rx-cooperation
rounds 2, . . . , �DRx−1

2 �+1, “slow” Rxs send quantized versions
of their output signals to the master Rx in the same network.
Each of these messages is of prelog L and the total number
of such messages equals

∑
k∈Tslow

γRx,k, where γRx,k denotes
the number of cooperation rounds required for “slow” Rx k
to reach the master Rx in its subnet. In rounds �DRx−1

2 � +
2, . . . , DRx, the master Rx sends the decoded messages to
all the “slow” Rxs in the subnet. Each of these messages is
again of prelog L and the total number of such messages is
again

∑
k∈Tslow

γRx,k. To summarize, each of the transmitted
messages is of prelog L and thus the average cooperation
prelog required per Rx-cooperation link is:

μ
(r)
Rx,both � L · lim

K→∞

∑
k∈Tslow

(
|I(F )

k | + 2γRx,k

)
QK,Rx

, (22)

where QK,Rx denotes the total number of Rx-cooperation links
in the network.

Remark 2: If the master Rx of a subnet is a “fast” Rx,
it does not have to send its decoded message to its “slow”
neighbours, because it decodes all “slow” messages jointly.
In this case, less Rx-cooperation prelog is required.
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B. Coding Scheme to Transmit Both “Fast” and “Slow”
Messages With CoMP Transmission

This second scheme splits the total number of cooperation
rounds D as:

DTx = D − 1 and DRx = 1. (23)

Similarly to the previous Subsection III-A, the scheme is
described by 5 items:

1) Creation of Subnets and Message Assignment: This item
is similar to item 1) of Subsection III-A, but the sets Tsilent,
Tfast and Tslow are chosen in a way that:

• as before, the signals sent by the “fast” Txs do not
interfere; and

• silencing the Txs in Tsilent decomposes the network into
non-interfering subnets so that in each subnet there is a
dedicated master Tx that can send a cooperation message
to any other “slow” Tx in the same subnet in at most⌊

DTx−1
2

⌋
cooperation rounds.

Items 2)-4) remain as described in Subsection III-A.
Item 5) is replaced by the following item.

5) Transmission and reception of “slow” messages using
CoMP transmission: “Slow” messages are transmitted using
standard CoMP transmission techniques that can ignore inter-
ference from “fast” Txs (due to the post-processing in item
4)) but account for the modified interference graph and the
modified channel matrix between slow messages caused by the
precanceling performed under item 2). The receivers decode
based on the new outputs Ŷ

n

k in (18).
We describe CoMP transmission in this context more for-

mally. During the first �DTx−1
2 � Tx-cooperation rounds, each

“slow” Tx of a subnet, sends its message to the master Tx of
the subnet. This latter encodes all received “slow” messages
using individual Gaussian codebooks and precodes them so as
to cancel all the interference from other “slow” messages at
the corresponding Rxs. I.e., it produces signals so that when
they are transmitted over the active antennas in the cell, the
signal observed at each “slow” Rx only depends on the “slow”
message sent by the corresponding Tx but not on the other
“slow” messages. The master Tx applies a Gaussian vector
quantizer on these precoded signals and sends the quantization
information over the cooperation links to the corresponding
Txs during the Tx-cooperation rounds �DTx−1

2 �+1 to DTx−1.
This is possible by the way we defined the master Txs. All
“slow” Txs reconstruct the quantized signals X̂

n

k intended for
them and send them over the network: Xn

k � X̂
n

k .
Each “slow” Rx k decodes its desired message from the

modified output sequence Ŷ
n

k defined in (18) using a standard
point-to-point decoder.

Analysis: Similarly to Subsection III-A, each transmitted
message can be sent reliably at MG L, and thus the scheme
achieves the MG pair in (19).

The load on the different cooperation links is again unevenly
distributed across links, and thus, by time-sharing and symme-
try arguments, the average Rx- and Tx-cooperation rates are
the limiting quantities. The required average Rx-cooperation

rate is easily characterized as:

μ
(t)
Rx,both � L · lim

K→∞

∑
k∈Tslow

|I(F )
k |

QK,Rx
, (24)

because Rx-cooperation takes place in a single round, during
which each “slow” Rx k learns all decoded “fast” messages
that interfere their receive signals and these messages are of
MG L. To calculate the required average Tx-cooperation rate,
define for each k ∈ Tslow the positive parameter γTx,k to
be the number of cooperation hops required from Tx k to
reach the master Tx in its subnet. During the first �DTx−1

2 �
Tx-cooperation rounds, a total of

∑
k∈Tslow

γTx,k cooperation
messages of MG L are transmitted from the “slow” Txs
to the master Txs in their subnet. The same number of
Tx-cooperation messages, all of MG L, is also conveyed
during rounds �DTx−1

2 �+1, . . . , 2�DTx−1
2 �, now from the master

Tx to the “slow” Txs in the subnet. During the last round,
“slow” Txs convey their messages to the adjacent “fast” Txs
that are interfered by their signals. Some of these signals,
however have already been shared during Tx-cooperation
rounds �DTx−1

2 � + 1, . . . , 2�DTx−1
2 �, and thus do not have to

be sent again. The total number of cooperation messages
during the last Tx-cooperation rounds is thus only equal
to
∑

k∈Tfast
|I(S)

k | − q, where q denotes the number of the
messages that have already been sent in previous rounds.
We will characterize the value of q when we analyze specific
networks. To summarize, the average required Tx-cooperation
rate of our scheme is:

μ
(t)
Tx,both � L · lim

K→∞

∑
k∈Tslow

2γTx,k +
∑

k∈Tfast
|I(S)

k | − q

QK,Tx
.

(25)

C. Coding Scheme to Transmit Only “Slow” Messages With
CoMP Reception and Transmission

In principle, since any “fast” message satisfies the con-
straints on “slow” messages, we can use the schemes provided
in Subsections III-A and III-B to send only “slow” messages.
Sometimes, the following scheme however performs better
because it requires less Tx- or Rx-cooperation rates. Choose a
set Tsilent ⊆ [K] and silence the Txs in this set, which decom-
poses the network in non-interfering subnets. The remaining
Txs in Tslow := [K]\Tsilent send only “slow” messages using
CoMP transmission or reception. The set Tsilent thus has to be
chosen such that in each subnet there is a dedicated master Rx
(or master Tx), which can be reached by any other Rx (Tx) in
the subnet in at most

⌊
D
2

⌋
cooperation rounds. Both versions

achieve the MG pair(
S(F ) = 0, S(S) = S(S)

max

)
, (26)

where

S(S)
max � L · lim

K→∞

|Tslow|
K

. (27)

The CoMP-reception scheme requires no Tx-cooperation
but average Rx-cooperation prelog

μ
(r)
Rx,S � L · lim

K→∞

∑
k∈Tslow

2γRx,k

QK,Rx
, (28)
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and the CoMP-transmission scheme requires no
Rx-cooperation but average Tx-cooperation prelog

μ
(t)
Tx,S � L · lim

K→∞

∑
k∈Tslow

2γTx,k

QK,Tx
, (29)

where recall that γRx,k, γTx,k ∈ {1, . . . ,
⌊

D
2

⌋
} denote the

number of cooperation hops required from a Rx k or a Tx k
to reach the master Rx or the master Tx in its subnet.

D. Coding Scheme Without Cooperation

Choose a set of Txs Tsilent ⊆ [K] so that the remaining Txs
Tactive := [K]\Tsilent do not interfere, and send “slow” or “fast”
over the resulting interference-free links. The scheme requires
no cooperation and achieves for any β ∈ [0, 1] the MG pair(

S(F ) = βSno-coop, S(S) = (1 − β)Sno-coop

)
, (30)

where

Sno-coop � L · lim
K→∞

(
1 − |Tsilent|

K

)
. (31)

IV. WYNER’S SYMMETRIC LINEAR MODEL

Consider Wyner’s symmetric linear cellular model where
cells are aligned in a single dimension and signals of users
that lie in a given cell interfere only with signals sent in
the two adjacent cells. See Figure 1 where the interference
pattern is illustrated by black dashed lines. We assume that
the various mobile users in a cell are scheduled on different
frequency bands, and focus on a single mobile user per cell
(i.e., on a single frequency band). We shall further assume that
the number of cells K and the maximum delay D are even.

The input-output relation of the network is

Y k,t = Hk,kXk,t +
∑

k̃∈{k−1,k+1}

Hk̃,kX k̃,t + Zk,t, (32)

where X0,t = 0 for all t, and the interference set at a given
user k is

Ik = {k − 1, k + 1}, (33)

where indices out of the range [K] should be ignored. In this
model, Rxs and Txs can cooperate with the two Rxs and Txs
in the adjacent cells, so

NTx(k) = {k − 1, k + 1} and NRx(k) = {k − 1, k + 1}.
(34)

Fig. 1 illustrates the interference pattern of the network
and the available cooperation links. As can be seen from this
figure, Txs 1 and K and Rxs 1 and K have a single outgoing
cooperation link and all other Txs and Rxs in this network
have two outgoing cooperation links. Thus, the total numbers
of Tx- and of Rx-cooperation links both are

QK,Tx = QK,Rx = 2K − 2. (35)

A. Choice of Tx/Rx Sets for the Schemes in Section III

1) “Fast” and “Slow” Messages With CoMP Reception:
For the mixed-delay scheme, choose the Tx/Rx set association
in Fig. 2, where “fast” Tx/Rx pairs are in yellow, “slow” in
blue, and silenced in white. I.e., set

Tsilent =
{

� (D + 2) : � = 1, . . . ,

⌊
K

D + 2

⌋}
, (36a)

Tfast = {1, 3, . . . , K − 1}, (36b)

Tslow = {1, . . . , K}\{Tsilent, Tfast}. (36c)

For this choice, transmissions of “fast” messages are inter-
fered only by transmissions of “slow” messages and for any �,
the Tx/Rx pairs in

T� � {�(D + 2) + 1, . . . , (� + 1)(D + 2) − 1} (37)

form a subnet for which Rx �(D + 2) + D/2 + 1 can act as
the master Rx because it can be reached by any “slow” Rx
(i.e., even Rx) in its subnet in at most (DRx−1)/2 cooperation
hops.

By (20) and (36), the scheme achieves the MG pair (S(F ) =
S

(F )
both, S

(S) = S
(S)
both) where

S
(F )
both � L

2
and S

(S)
both � L · D

2(D + 2)
. (38)

To analyze the required cooperation prelogs of the scheme,
μ

(r)
Tx,both and μ

(r)
Rx,both, we evaluate the formulas in (21) and (22).

We have for each subnet � ∈ {1, . . . , �K/(D + 2)�}:∑
k∈Tfast∩T�

|I(S)
k | = 2 + 2(D/2 − 1) = D. (39)

In the limit K → ∞, we obtain

μ
(r)
Tx,both = L · D

2(D + 2)
. (40)

To calculate the required Rx-cooperation prelog μ
(r)
Rx,both,

notice that |I(F )
k | = 2. Since there are D/2 “slow” Rxs in

each subnet T�: ∑
k∈Tslow∩T�

|I(F )
k | = 2 · D

2
= D. (41)

In addition, Rxs also exchange cooperation messages to
enable CoMP reception. Thereby, the quantization message
produced by a “slow” Rx k = �(D + 2) + i, for i ∈
{2, 4, . . . , D−2}, has to propagate over γRx,k = |D/2+1− i|
hops to reach the subnet’s master Rx. If D/2 + 1 is even,∑

k∈Tslow∩T�

γRx,k =
∑

i∈{2,4,...,D/2−1}
2 · (D/2 + 1 − i)

=
1
2

(
D2

4
− 1
)

. (42)

Then, according to (22), (35), (41), and (42), when D/2+1
is even, in the limit as K → ∞:

μ
(r)
Rx,both = L ·

D + D2

4 − 1
2(D + 2)

for D/2 + 1 even. (43)
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When D/2 + 1 is odd, the sum in (42) evaluates to D2

8 .
Moreover, in this case, the master Rx is a “fast” Rx. It does
not have to send its decoded message to any neighbour, as it
locally decodes all “slow” messages of the subnet. So, (see
also Remark 2), the nominator in (22) can be reduced by 2.
Putting all these together, we obtain

μ
(r)
Rx,both = L ·

D + D2

4 − 2
2(D + 2)

for D/2 + 1 odd. (44)

2) “Fast” and “Slow” Messages With CoMP Transmission:
Choose the same cell association as for the CoMP reception
scheme described in (36) and depicted in Fig. 2. Under this
cell association, Tx D/2 + 1 can act as a master Tx because
it can be reached by any “slow” (even) Tx in its subnet in
at most (DTx − 1)/2 cooperation rounds. Since the same cell
partitioning is used, namely (36), this scheme achieves the
same MG pair as with CoMP reception, see (38). Moreover,
by (24) and (41) in the limit as K → ∞, the required average
Rx-cooperation prelog is

μ
(t)
Rx,both = L · D

2(D + 2)
. (45)

Similarly, consider (25) and (39) and notice that for D/2+1
even,∑
k∈Tslow∩T�

γTx,k =
∑

i∈{2,4,...,D/2−1}
2(D/2 + 1 − i) =

1
2

(
D2

4
− 1
)

,

(46)

whereas for D/2 + 1 odd, this sum evaluates to D2

8 . We con-
sider the q-term in (25), which characterizes the number of
quantization messages describing the “slow” signals that are
counted twice: once for the CoMP transmission and once
for the interference mitigation at “fast” transmitters. In each
subnet, D/2 − 1 such messages are double-counted, when
D/2 + 1 is even, and D/2 messages are double-counted when
D/2 + 1 is odd. Therefore, and according to (25), (39), (46),
when K → ∞, the average Tx-cooperation prelog required by
the scheme is

μ
(t)
Tx,both = L ·

D + D2

4 − 1 − D/2 + 1
2(D + 2)

= L · D
8

, (47)

irrespective of whether D/2 + 1 is even or odd.
3) Transmitting Only “Slow” Messages With CoMP

Reception and Transmission: Consider the scheme in
Subsection III-C that transmits only “slow” messages, either
using CoMP transmission or CoMP reception. For both
schemes we regularly silence every D + 2nd Tx, i.e., as
in the two previous subsections, Tsilent �

{
�(D + 2): � =

1, . . . , � K
D+2�

}
. Also, we set Tslow = [K]\Tsilent. These choices

are permissible, because all Txs (or Rxs) in a subnet T� =
{(�− 1)(D+ 2)+ 1, . . . , �(D + 2)− 1} can reach the subnet’s
central Tx (�−1)(D+2)+D+1 (or Rx (�−1)(D+2)+D+1)
in at most D/2 cooperation hops, and thus this Tx (Rx) can
act as the subnet’s Master Tx (Rx).

By (27), the scheme in Subsection III-C achieves the MG
pair (S(F ) = 0, S(S) = S

(S)
max) where

S(S)
max � L · D + 1

D + 2
. (48)

With CoMP reception, this scheme does not use any
Tx-cooperation. To calculate the Rx-cooperation prelog,
we use the fact that Rx k = �(D +2)+ i, for positive integers
� and i ≤ D + 1, reaches the master Rx in its subnet in
γRx,k = |D/2 + 1 − i| hops. Since:

2
∑
k∈T�

γRx,k = 4
D/2∑
i=1

i =
D(D + 2)

2
, (49)

by (28), in the limit as K → ∞, the average Rx-cooperation
prelog tends to

μ
(r)
Rx,S = L · D

4
. (50)

Similar conclusions show that when CoMP transmission
is used instead of CoMP reception, the scheme requires
zero Rx-cooperation prelog and a Tx-cooperation prelog of
μ

(t)
Tx,S = μ

(r)
Rx,S.

4) No-Cooperation Scheme: Consider the no-cooperation
scheme in Subsection III-D. For Wyner’s symmetric network
we create non-interfering point-to-point links by silencing
all even Txs in the network, i.e., by choosing Tsilent �
{2, 4, . . .2�K

2 �}. Since all odd receivers remain active,
the sum-prelog in (31) for this network evaluates to

Sno-coop � L

2
. (51)

B. Achievable MG Regions

Recall the definitions of S
(F )
both, S

(S)
both, S

(S)
max, Sno-coop

in (38), (48), and (51) and the definitions of

μ
(r)
Tx,both, μ

(r)
Rx,both, μ

(t)
Rx,both, μ

(t)
Tx,both in (40), (43), (47), and

(45). Define further

α � max

{
min

{
μTx

μ
(r)
Tx,both

,
μRx

μ
(r)
Rx,both

}
,

min

{
μTx

μ
(t)
Tx,both

,
μRx

μ
(t)
Rx,both

}}
, (52)

and

S
(S)
sym,1(α) � αS(S)

max + (1 − α)Sno-coop, (53)

S
(F )
sym,2(α) � αS

(F )
both + (1 − α)Sno-coop, (54)

S
(S)
sym,2(α) � αS

(S)
both, (55)

S
(F )
sym,3(α) � αS

(F )
both, (56)

S
(S)
sym,3(α) � αS

(S)
both + (1 − α)S(S)

max. (57)

According to the arguments in the previous subsection,
the following regions of MG pairs are achievable depending
on the available cooperation prelogs μTx and μRx.

Theorem 1 (Achievable MG Region: Wyner’s Symmetric
Model): Assume D ≥ 2 and even.

When μRx ≥ μ
(r)
Rx,both and μTx ≥ μ

(r)
Tx,both; or when μRx ≥

μ
(t)
Rx,both and μTx ≥ μ

(t)
Tx,both:

convex hull
(
(0, 0), (0, S(S)

max), (S(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (58)
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When μRx ≥ μ
(r)
Rx,S and μTx < μ

(r)
Tx,both; or when μTx ≥ μ

(t)
Tx,S

and μRx < μ
(t)
Rx,both:

convex hull
(
(0, 0), (0, S(S)

max), (S(F )
sym,3(α), S

(S)
sym,3(α)),

(S(F )
sym,2(α), S

(S)
sym,2(α)), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (59)

When μRx < μ
(r)
Rx,both or when μTx < μ

(t)
Tx,both:

convex hull
(
(0, 0), (0, S

(S)
sym,1(α)),

(S(F )
sym,2(α), S(S)

sym,2(α)), (Sno-coop, 0)
)

⊆ S�(μTx, μRx, D). (60)

Proposition 1 (Outer Bound on the MG Region:
Wyner’s Symmetric Model): Any MG pair (S(F ), S(S)) in
S�(μTx, μRx, D) satisfies

S(F ) ≤ L

2
, (61)

S(F ) + S(S) ≤ L · D + 1
D + 2

. (62)

Proof: Follows by specializing the MAC-Lemma for inter-
ference networks with conferencing [18, Lemma 1] to Wyner’s
symmetric network and to the choices

Joutputs �
⋃

�∈{1,...,� K
2(D+2) �}

{
2 + (� − 1)(2D + 4),

. . . , �(2D + 4) − 1
}
, (63)

Jinputs �
⋃

�∈{1,...,� K
2(D+2) �}

{
D + 2 + (� − 1)(2D + 4),

. . . , D + 3 + (� − 1)(2D + 4)
}
, (64)

Jmessages �
⋃

�∈{1,...,� K
2(D+2) �}

{
D+2−DTx+(�−1)(2D+4),

. . . , D + 3 + DTx + (� − 1)(2D + 4)
}
. (65)

Corollary 1: If(
μRx ≥ μ

(r)
Rx,both and μTx ≥ μ

(r)
Tx,both

)
or(

μRx ≥ μ
(t)
Rx,both and μTx ≥ μ

(t)
Tx,both

)
, (66)

the optimal MG region S�(μTx, μRx, D) coincides with the
trapezoid in (58).

Proof: Follows directly by Theorem 1 and Proposition 1.

By Corollary 1, for large cooperation prelogs μTx and μRx,
imposing a stringent delay constraint on the “fast” messages
never penalizes the maximum achievable sum-MG of the
system: the same sum-MG can be achieved as if only “slow”
messages were sent.

The next corollary characterizes the optimal MG region
S�(μTx, μRx, D) when one of the two cooperation prelogs (μTx

or μRx) is small and the other large, and when S(F ) lies below a
certain threshold. The corollary shows that also in this regime
the same maximum sum-MG can be achieved as if only “slow”
messages were sent. When S(F ) exceeds this threshold, our

Fig. 3. Bounds on S�(µTx, µRx, D) for Wyner’s symmetric model for
different values of µRx and µTx, and for L = 3 and D = 6. The brown
dotted line is the time-sharing region.

Fig. 4. Bounds on S�(µTx, µRx, D) for Wyner’s symmetric model for
different values of µRx and µTx, and for L = 3 and D = 10. The brown
dotted line is the time-sharing region.

achievable MG region in (59) shows a penalty in sum-MG
which increases linearly with the “fast” MG. In this regime
we do not have a matching converse result.

Corollary 2: Assume that(
μRx ≥ μ

(r)
Rx,S and μTx < μ

(r)
Tx,both

)
or(

μTx ≥ μ
(t)
Tx,S and μRx < μ

(t)
Rx,both

)
. (67)

For any S(F ) ∈ [0, α· L
2 ], where α is defined in (52), the pair

(S(F ), S(S)) lies in the optimal MG region S�(μTx, μRx, D) if,
and only if, it is in the trapezoid described on the LHS of (59).

Proof: Follows directly by Theorem 1, see (59), and by
Proposition 1, and because the sum S

(F )
sym,3(α) + S

(S)
sym,3(α) =

L · D+1
D+2 coincides with the maximum sum MG.

Figures 3 and 4 illustrate the inner and outer bounds
(Theorem 1 and Proposition 1) on the MG region with D = 6
and D = 10, and different values of μRx and μTx. As can
be seen in Figure 3 and as also explained in Corollary 1,
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Fig. 5. Illustration of the hexagonal network. Small circles indicate Txs and
Rxs, black solid lines the cell borders, and black dashed lines interference
between cells.

when μRx ≥ 2.625 and μTx ≥ 1.125, or when μRx ≥ 1.125
and μTx ≥ 2.25 the inner bound in (58) and the outer bound
match. In the former case, the inner bound is achievable using
the scheme in Subsection IV-A.1 based on CoMP reception,
and in the latter case it is achievable using the scheme in
Subsection IV-A.2 based on CoMP transmission. As explained
in Corollary 2, when only one of the two cooperation prelogs
is large and the other small (e.g., μRx ≥ 4.5 and μTx = 0.5;
or μTx ≥ 4.5 and μRx = 0.5) the inner bound in (59) matches
the outer bound of Proposition 1 only for S(F ) < α · L

2 , where
α is defined in (52). For larger values of S(F ), the maximum
“slow” MG S(S) achieved by our schemes decreases linearly
with S(F ). For example, for D = 6 and (μRx ≥ 4.5, μTx = 0.5)
or (μTx ≥ 4.5, μRx = 0.5) when S(F ) ≥ α · L

2 increases
by Δ then S(S) decreases by approximately 1.75Δ and the
sum-MG by 0.75Δ. The behaviour changes again when both
μRx and μTx are moderate or small, e.g., μRx = 0.5 and
μTx = 1 or μRx = 1 and μTx = 0.5. In this case, the sum-MG
achieved by our inner bound is constant over all regimes of
S(F ). We finally notice that in these small cooperation-prelog
regimes our inner bounds remain unchanged for D = 6, 8, 10.
The reason is that in this regime, even when D > 6, it is more
advantageous to reduce the number of cooperation rounds to
6 in order to satisfy the cooperation prelogs than to time-share
different schemes with D > 6 cooperation rounds. The
brown dotted line is the result of time-sharing the scheme
in Subsection IV-A.3 that transmit only “slow” messages with
the scheme in Subsection IV-A.4 when only “fast” messages
are transmitted. The scheme in Subsection IV-A.3 is based
on CoMP reception and to achieve the maximum “slow” MG
requires μRx ≥ 4.5 for D = 6 and μRx ≥ 7.5 for D = 10. The
sum-MG in this scheme decreases linearly with the “fast” MG.

V. HEXAGONAL NETWORK

Consider a network with K hexagonal cells, where each
cell consists of one single mobile user (MU) and one BS. The
signals of users that lie in a given cell interfere with the signals
sent in the 6 adjacent cells. The interference pattern of our
network is depicted by the black dashed lines in Fig. 5, i.e., the
interference set Ik contains the indices of the 6 neighbouring
cells whose signals interfere with cell k. The input-output
relation of the network is as in (97).

Each Rx k (BS of a cell) can cooperate with the six Rxs
in the adjacent cells, i.e., |NRx(k)| = 6. Thus, the number of

Rx-cooperation links QK,Rx in this network is approximately
equal to 6K (up to edge effects). Similarly, each Tx (MU of a
cell) can cooperate with the six Txs in the adjacent cells and
thus |NTx(k)| = 6 and QK,Tx ≈ 6K .

To describe the setup and our schemes in detail, we para-
meterize the locations of the Tx/Rx pair in the k-th cell by a
number ok in the complex plane C. Introducing the coordinate
vectors

ex =
√

3
2

− 1
2
i and ey = i, (68)

as in Figure 5, the position ok of Tx/Rx pair k can be
associated with integers (ak, bk) satisfying

ok � ak · ex + bk · ey. (69)

The interference set Ik and the neighbouring sets can then
be expressed as

NTx(k) = NRx(k) = Ik

=
{
k′ : |ak − ak′ | = 1 and |bk − bk′ | = 1
and |ak − ak′ − bk + bk′ | = 1

}
. (70)

For simplicity we assume an even-valued D satisfying

D
2
− 1 mod 3 = 0. (71)

Other cases can be treated in a similar way.
We specify the Tx/Rx set associations for the schemes

in Section III. See [39] for a detailed analysis. For the
no-cooperation scheme in Subsection III-D choose

Tactive = {k ∈ [K] : (ak + bk) mod 3 = 0} (72)

and Tsilent = [K]\Tactive. The corresponding cell association
is shown in Figure 6a where active cells are in yellow and
silenced in white. By (31), the sum-MG achieved by this
scheme is

Sno-coop =
L

3
. (73)

We next explain the Tx/Rx set association for sending only
“slow” messages as in Subsection III-C, see also [34]. Set
τ = D

2 + 1 and choose Tx k (Rx k) as a master Tx (Rx), if it
belongs to

Tmaster

=
{
k ∈ [K] : (ak mod τ = 0) and (bk mod τ = 0)

and (|ak + bk| mod 3τ = 0)
}
. (74)

To describe the silenced set Tsilent, we define for any integers
x and τ ≥ 0:

x[−τ,2τ ] � ((x + τ) mod 3τ) − τ, (75)

where mod denotes the standard modulo operator. In fact,
the operator x[−τ,2τ ] resembles the standard mod 3τ opera-
tor, but it shifts every number into the interval [−τ, 2τ) and
not into [0, 3τ). We then set

Tsilent =
{
k : max{|ak[−τ,2τ)|,

|bk[−τ,2τ)|, |ak[−τ,2τ) − bk[−τ,2τ)|} = τ
}

(76)
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Fig. 6. Cell associations for the schemes in the hexagonal network.

and Tslow = [K]\Tsilent. Figure 6b shows the proposed cell
association for D = 6: blue or yellow are the active “slow”
cells and white the silenced cells. Master Txs (Rxs) are in
green pattern. We observe that the choice in (76) silences all
Tx/Rx pairs which lie D

2 + 1 hops away from a master Tx/Rx
pair. As we detail out in [39], by (26) and (27), this choice
establishes an achievable MG pair of (S(F ) = 0, S(S) = S

(S)
max),

where

S(S)
max � L · 4 + 3D(D + 2)

3(D + 2)2
. (77)

Moreover, by (28) and (29), with CoMP reception or
CoMP transmission the scheme requires average Rx- or
Tx-cooperation prelogs equal to

μ
(t)
Tx,S = μ

(r)
Rx,S = L · D(D + 1)

9(D + 2)
. (78)

Finally, we turn to the scheme that sends both “fast” and
“slow” messages in Subsections III-A and III-B. Here, we set
τ = D

2 and choose the set of master Txs (Rxs) as in (74),
but for this new value of τ . Similarly, we choose the silenced
set Tsilent as in (76) but again for the new value τ = D

2 . The
“fast” transmit set Tfast is chosen in the same way as Tactive

in (72), and Tslow = [K]\{Tsilent ∪ Tfast}. The cell association
is depicted in Figure 6b for D = 8, where “fast” cells are
in yellow, “slow” cells in blue, and master cells are in green
pattern. As detailed out in [39], by (20), the proposed cell
association achieves the MG pair (S(F ) = S

(F )
both, S

(S) = S
(S)
both)

where

S
(F )
both � L

3

(
1 − 2(D − 2)

D2

)
and S

(S)
both � 2L

3

(
1 − 2

D

)
,

(79)

and by (21) and (22) the average Tx- and Rx-cooperation
prelogs with CoMP reception are

μ
(r)
Tx,both � L · (D − 2)(3D − 4)

9D2 (80)

μ
(r)
Rx,both � L · 2D3 + 3D2 − 30D + 32

27D2 , (81)

and with CoMP transmission they are

μ
(t)
Tx,both � L · 2D3 − 12D − 28

27D2 (82)

μ
(t)
Rx,both � L · (D − 2)(3D − 4)

9D2 . (83)

A. Achievable MG Region

Recall the definitions of Sno-coop, S
(S)
max, S

(F )
both, S

(S)
both in (73),

(77), and (79), and the definitions of μ
(r)
Tx,both, μ

(r)
Rx,both, μ

(t)
Tx,both

and μ
(t)
Rx,both in (80) and (82). Define

α1 � max

{
min

{
μTx

μ
(r)
Tx,both

,
μRx

μ
(r)
Rx,both

}
,

min

{
μTx

μ
(t)
Tx,both

,
μRx

μ
(t)
Rx,both

}}
, (84)

α2 � max

{
μTx

μ
(t)
Tx,S

,
μRx

μ
(r)
Rx,S

}
. (85)

Also, define

S
(F )
hexa,1(α1) � α1S

(F )
both, (86)

S
(S)
hexa,1(α1) � α1S

(S)
both + (1 − α1)S(S)

max, (87)

S
(F )
hexa,2(α1) � α1S

(F )
both + (1 − α1)Sno-coop, (88)

S
(S)
hexa,2(α1) � α1S

(S)
both, (89)

S
(S)
hexa(α2) � α2S

(S)
max + (1 − α2)Sno-coop. (90)

Theorem 2 (Achievable MG Region: Hexagonal Model):
Assume D ≥ 2, even, and D

2 − 1 mod 3 = 0.

When μRx ≥ max{μ(r)
Rx,both, μ

(r)
Rx,S} and μTx ≥ μ

(r)
Tx,both; or

when μTx ≥ max{μ(t)
Tx,both, μ

(t)
Tx,S} and μRx ≥ μ

(t)
Rx,both; then:

convex hull
(
(0, 0), (0, S(S)

max), (S(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (91)
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Fig. 7. Inner and outer bounds on S�(µTx, µRx, D) for the hexagonal model for D = 8, L = 3 and different values of µRx and µTx. The dotted brown line
shows the time-sharing region.

When μ
(r)
Rx,both ≤ μRx < μ

(r)
Rx,S and μTx ≥ μ

(r)
Tx,both; or when

μ
(t)
Tx,both ≤ μTx < μ

(t)
Tx,S and μRx ≥ μ

(t)
Rx,both; then:

convex hull
(
(0, 0), (0, S

(F )
both + S

(S)
both),

(S(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (92)

When μRx ≥ μ
(r)
Rx,S and μTx < μ

(r)
Tx,both; or when μTx ≥ μ

(t)
Tx,S

and μRx < μ
(t)
Rx,both; then:

convex hull
(
(0, 0), (0, S(S)

max), (S(F )
hexa,1(α1), S

(S)
hexa,1(α1)),

(S(F )
hexa,2(α1), S

(S)
hexa,2(α1)), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (93)

When μRx < μ
(r)
Rx,both or when μTx < μ

(t)
Tx,both, then:

convex hull
(
(0, 0), (0, S

(S)
hexa(α2)),

(S(F )
hexa,2(α1), S

(S)
hexa,2(α1)), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (94)

Proposition 2 (Outer Bound on The MG Region: Hexagonal
Model): Any MG pair (S(F ), S(S)) in S�(μTx, μRx, D) satisfies

S(F ) ≤ L

2
, (95)

S(F ) + S(S) ≤ min

{
L

2
+ 2μRx + 2μTx,

L

(
1 − 1

2(1 + D)

)}
. (96)

Proof: Follows by extending the converse in [34, Theo-
rem 2] to the hexagonal model without sectors and with both
Tx- and Rx-cooperation. See [39, Appendix C] for details.

Figure 7 illustrates the inner and outer bounds (Theorem 2
and Proposition 2 ) on the MG region for D = 8, and different

values of μRx and μTx. We observe that, unlike Wyner’s sym-
metric model, the sum-MG of this network always decreases
as S(F ) increases, irrespective of the cooperation prelogs
μTx, μRx. Moreover, maximum S(F ) = L

3 in our bound is only
achieved for S(S) = 0. We remark here that for certain channel
matrices (in fact for many but not for all) “fast” MG S(F ) is
achievable using interference alignment [35]–[37]. For these
channel matrices of course our inner bound can be improved
accordingly.

In Figure 7, we can distinguish 4 behaviours for the
achieved MG region: 1) If both μRx and μTx are above given
thresholds, for D = 8 and either (μTx ≥ 0.6, μRx ≥ 2.4)
or (μTx ≥ 0.63, μRx ≥ 2.4), then the points (0, S

(S)
max) and

(S(F )
both, S

(F )
both) are both achievable. 2) When one of the two

cooperation prelogs remains very high (μRx or μTx larger than
2.4) but the other one becomes relatively small, only (0, S

(S)
max)

is achievable, but not (S(F )
both, S

(F )
both). The largest achievable S(S)

is thus not reduced as long as S(F ) remains small; for larger
values of S(F ) the maximum achievable S(S) however suffers
significantly. The reason is that our schemes that send both
“fast” and “slow” messages inherently require both Tx- and
Rx-cooperation of sufficiently high cooperation prelogs. As a
consequence, the maximum S(S) that our schemes achieve
for large S(F ) highly depends on the smaller of the two
cooperation prelogs μTx and μRx. 3) When both μTx, μRx are
moderate, we can still achieve the MG pair (S(F )

both, S
(F )
both) but not

(0, S
(S)
max). In the regime of small S(F ) there is thus a penalty

in S(S) and sum MG compared to the case of high cooperation
prelogs but not in the regime of large S(F ). 4) Finally, when
both cooperation prelogs become small then neither of the two
points (0, S

(S)
max) and (S(F )

both, S
(F )
both) is achievable anymore.

The brown dotted line is the resulting region under the
traditional scheduling scheme that time-shares the scheme
achieving the point (0, S

(S)
max) with the scheme achieving the

point (Sno-coop, 0). To achieve the point (0, S
(S)
max), this scheme

requires μRx ≥ 2.4 and μTx = 0 while using CoMP reception,
and μRx = 0 and μTx ≥ 2.4 while using CoMP transmission.
Comparing the slope of this line with the slopes of the regions



8128 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Fig. 8. Illustration of sectorized hexagonal network. (a) Dashed lines indicate interference between sectors and thick lines cell borders. (b) Txs in white
sectors are deactivated, Txs in yellow sectors send “fast” messages and Txs in blue sectors send “slow” messages. Master Txs (Rxs) are in green pattern.

achieved under our proposed scheme show that the penalty on
the sum-MG caused by the transmission of “fast” messages is
large in this scheme.

VI. SECTORIZED HEXAGONAL MODEL

Reconsider the cellular network with K hexagonal cells
and cell coordinate system spanned by the vectors ex and ey

introduced in the previous section. Here, each cell consists of
three sectors denoted by “S”, “W”, and “E”, see Figure 8a, and
we also number the sectors from 1 to 3K . A single 3L-antenna
Rx (BS) is associated to each cell and a single L-antenna Tx
to each sector. Each Rx decodes the 3 “slow” and the 3 “fast”
messages of the Txs in the 3 sectors corresponding to its cell.
Rxs are equipped with directional antennas, where each set
of L antennas at a given Rx (BS) points to one of the three
sectors of its cell. Therefore, communications from different
sectors in the same cell do not interfere, see Fig. 8a where
interference is depicted by dashed lines. Interference is short-
range, and transmission in the grey-shaded sector of Fig. 8a
is, e.g., interfered by the transmissions in the four adjacent
pink-shaded sectors. The interference set ITx,k′ of sector k′ is
thus the set of indices of the 4 adjacent sectors that lie in a
different cell.

For the purpose of this section, we thus modify the setup in
Section II in that we have 3K Txs and K Rxs and each Rx k
observes the output signals Yn

k := (Yn
k1

,Yn
k2

,Yn
k3

), where
k1, k2, k3 denote the three sectors in cell k, and

Yn
ki

= Hki,kiX
n
ki

+
∑

k̂∈Iki

Hk̂,ki
Xn

k̂
+ Zn

ki
, i ∈ {1, 2, 3}.

(97)

We consider per-sector MGs, and accordingly the average
rates in (10) are normalized with respect to 3K and not K .
All other definitions of Section II remain unchanged.

Each Rx k (BS of a cell) can cooperate with the Rxs in
the six adjacent cells, i.e., |NRx(k)| = 6 and QK,Rx ≈ 6K .
Each Tx (MU of a cell) can cooperate with the four Txs in
the adjacent sectors of different cells, i.e. |NTx(k)| = 4 and
since there are 3K Txs, QK,Tx ≈ 12K . Assume D even.

The coding schemes and results in Section III apply also to
this modified setup, if Tsilent, Tactive, Tfast, Tslow ⊆ [3K] and the
MG results (20), (27), and (31) are normalized with respect to
3K and not K . We only consider CoMP reception, and thus
Tmaster ⊆ [K].

A. Tx/Rx Set Associations and MG Region

We specify the Tx/Rx set associations for our schemes of
Section III. For the no cooperation scheme, define the active
set Tactive as the set of either the “W” sectors, the “E” sectors,
or the “S” sectors of all cells. This achieves the sum-MG

Sno-coop � L

3
. (98)

For the cooperative schemes, we pick the set of master
cells Tmaster as in (74) for τ = D

2 . Unlike in the hexagonal
model in Section V, it suffices to silence certain sectors of
layer D/2 around each master cell (but not necessarily entire
cells). Consider the subnet that has its master cell kmaster at
the origin akmaster = bkmaster = 0. For this subnet, we keep
active all 3 sectors of the corner cells in layer D/2 that have
coordinates (ak = D/2, bk = 0), (ak = 0, bk = D/2), and
(ak = −D/2, bk = −D/2), and we silence all 3 sectors of the
remaining 3 corner cells of this layers, which have coordinates
(ak = D/2, bk = D/2), (ak = −D/2, bk = 0), and (ak =
0, bk = −D/2). We further silence in this layer D/2: the “S”
sector of all non-corner cells with coordinates |bk| = D/2
and sign(ak) = sign(bk); the “E” sector of all non-corner
cells with coordinates |ak| = D/2 and sign(ak) = sign(bk);
and the “W” sector of all non-corner cells with coordinates
sign(ak) 
= sign(bk). As for the hexagonal model, all Txs that
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lie less than D/2 cell hops from a master cell are kept active.
The proposed sector association splits the entire network into
equal non-interfering subnets (up to edge effects that vanish
as K → ∞), each consisting of a master cell, all sectors of
the cells in the D/2 − 1 surrounding layers, and none or one
sector in each cell of layer D/2. The proposed cell and sector
association is shown in Figure 8b for D = 8, where yellow
and blue sectors are active and white are silenced. The borders
of the subnets are shown by red lines.

As shown in [39], when sending only “slow” messages the
proposed sector association achieves (S(F ) = 0, S(S) = S

(S)
max)

where

S(S)
max � L · 3D − 2

3D
, (99)

and it requires an average Rx-cooperation prelog of

μ
(r)
Rx,S = L · (D − 1)

3
. (100)

In the scheme sending both “fast” and “slow” messages,
the Txs in the “yellow” sectors of Figure 8b send “fast”
messages and the Txs in the “blue” sectors send “slow”
messages. We describe the cell association more formally for a
subnet whose master cell is at the origin. All other subnets are
equal. All active sectors in layer-D/2 of this subnet send “fast”
messages, but all sectors in the cells satisfying one of the three
following conditions only send “slow” messages: (ak ≥ 0 and
bk = 0) or (ak = 0 and bk ≥ 0) or (ak = bk ≤ 0). All other
cells have exactly one “fast” sector and two “slow” sectors.
Specifically, cells with ak, bk > 0 send a “fast” message in
their “W” sector; cells with ak < 0 and bk > ak send a “fast”
message in their “S” sector; and cells with bk < 0 and ak > bk

send a “fast” message in their “E” sector.
We prove in [39] that the proposed sector association

achieves the MG pair

S
(F )
both � L

3
, and S

(S)
both � L · 2D − 2

3D
, (101)

and requires average Tx- and Rx-cooperation prelogs

μ
(r)
Tx,both � L · (D − 1)

3D
and μ

(r)
Rx,both � L · 2D2 − 5

9D
. (102)

Recall definitions (98)–(101) and define

α1 � μTx

μ
(r)
Tx,both

and α2 � min

{
μTx

μ
(r)
Tx,both

,
μRx

μ
(r)
Rx,both

}
,

(103)

S(F )
sec (α1) � α1S

(F )
both, (104)

S(S)
sec (α1) � α1S

(S)
both + (1 − α1)S(S)

max, (105)

S
(F )
sec,1(α2) � α2S

(F )
both + (1 − α2)Sno-coop, (106)

S
(S)
sec,1(α2) � α2S

(S)
both, (107)

S
(S)
sec,2(α2) � α2S

(S)
max + (1 − α2)Sno-coop. (108)

The following theorem is proved in [39].
Theorem 3 (Achievable MG Region: Sectorized Hexagonal

Model): Assume D ≥ 2 and even.
When μRx ≥ μ

(r)
Rx,both and μTx ≥ μ

(r)
Tx,both;

convex hull
(
(0, 0), (0, S(S)

max), (S
(F )
both, S

(S)
both), (Sno-coop, 0)

)

Fig. 9. Inner and outer bounds on S�(µTx , µRx, D) for the sectorized
hexagonal model for D = 4, L = 3 and different values of µRx and µTx. The
brown dotted line is the time-sharing region.

⊆ S�(μTx, μRx, D). (109)

When μRx ≥ μ
(r)
Rx,S and μTx < μ

(r)
Tx,both;

convex hull
(
(0, 0), (0, S(S)

max), (S
(F )
sec (α1), S(S)

sec (α1)),

(S(F )
sec,1(α2), S

(S)
sec,1(α2)), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (110)

When μRx < μ
(r)
Rx,both and μTx < μ

(r)
Tx,both;

convex hull
(
(0, 0), (0, S

(S)
sec,2(α2)),

(S(F )
sec,1(α2), S

(S)
sec,1(α2)), (Sno-coop, 0)

)
⊆ S�(μTx, μRx, D). (111)

Proposition 3 (Outer Bound on The MG Region: Sec-
torized Hexagonal Model): Any MG pair (S(F ), S(S)) in
S�(μTx, μRx, D) satisfies

S(F ) ≤ L

2
, (112)

S(F ) + S(S) ≤ min

{
L

2
+

2μRx + 4μTx

3
,

L

(
1 − 1

2(1 + D)

)}
. (113)

Proof: Follows by an extension of the converse in
[34, Theorem 2] to both Tx- and Rx-cooperation. See
[39, Appendix D] for details.

Figure 9 illustrates the inner and outer bounds (Theorem 3
and Proposition 3) on the MG region for D = 4, and different
values of μRx and μTx. As can be seen from this figure, when
μRx ≥ 2.25 and μTx ≥ 0.75, there is no penalty in sum MG
even at maximum “fast” MG. It also can be seen from this
figure that transmitting “fast” messages using the traditional
time-sharing scheme (brown dotted line) at any “fast” MG has
a penalty on sum-MG.
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VII. CONCLUSION

We proposed a coding scheme for general interfer-
ence networks that accommodates the transmission of both
delay-sensitive and delay-tolerant messages. We characterized
the MG region of Wyner’s symmetric network for certain
parameters and derived inner bounds on the achievable MG
region for general parameters, as well as for the sectorized
and non-sectorized hexagonal model. The results for Wyner’s
symmetric model showed that it is possible to accommodate
the largest possible MG for delay-sensitive messages, without
penalizing the maximum sum MG of both delay-sensitive
and delay-tolerant messages. Our proposed scheme suggests
a similar behaviour for the sectorized hexagonal model,
when one restricts to one-shot interference alignment. For
the non-sectorized hexagonal model this does not seem to be
the case, and our results always show a penalty in sum MG
whenever the delay-sensitive MG is not zero. These results
indicate that each network needs to be carefully analyzed to
determine whether a sum MG penalty exists under mixed-
delay traffics. Nevertheless, in this paper we proposed a joint
coding scheme that accommodates mixed-delay traffics for
general networks while significantly improving the sum MG
compared to a classical scheduling approach.

Our proposed coding schemes suggest that in the regime of
high delay-sensitive MGs, it is important to have sufficiently
high cooperation prelogs both at the Tx- and the Rx-side to
attain the same sum MG as when only delay-tolerant messages
are sent. Moreover, in this regime, Tx-cooperation seems to
be slightly more beneficial under mixed-delay traffics than Rx-
cooperation. An interesting line of future research is to analyze
the effect of delay-sensitive messages on generalized Wyner
models with fading coefficients and finite precision channel
state information. Here also the notion of generalized degrees
of freedom (GDoF) is of interest, see also [33].
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