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The Filtered Gaussian Primitive Diamond Channel
Asif Katz , Michael Peleg , Life Senior Member, IEEE, and Shlomo Shamai (Shitz) , Life Fellow, IEEE

Abstract— We investigate a special case of diamond relay com-
prising Gaussian channels with an identical frequency response
from the user to the relays, and with lossless fronthaul links with
limited rate from the relays to the destination. We use the obliv-
ious compress and forward (CF) scheme with with distributed
compression, and a decode and forward (DF) scheme, where each
relay decodes the whole message and sends half of the bits to
the destination. It is proved that optimal CF-DF time-sharing
scheme is advantageous over the CF-DF superposition scheme.
We derive an achievable rate by using time-sharing between CF
and DF. The optimal time-sharing proportion between CF and
DF, and the power and rate allocations are different for each
frequency and are fully determined.

Index Terms— Diamond relay channel, information bottle-
neck, compress and forward, decode and forward, distributed
compression.

I. INTRODUCTION

RELAYING is a classical technique in communications
systems, which is of theoretical and practical importance.

It is the central element in wireless cell-free technology,
where the complete decoding is performed only at the
destination. Indeed, distributed non-cooperative relaying is
the basic element in what is known as the Cloud Radio
Access Network (CRAN) [1]–[3], where there are several
relays and each possesses an error free fronthaul link to a
cloud computing central processor. Another practical example
of such a scheme is based on remote radio heads connected
to base stations with common public radio interface [4].
In those applications it is of interest to maximize the
information throughput, while the transmit power and the
rates of the fronthaul links are constrained. Our study is
directly associated with these models, with the focus on
point-to-point communications over the primitive diamond
channel. We extend the view of classical oblivious processing,
which is based on distributed CF as examined in [5], and
allow the relays to combine CF and DF optimally. An analysis
of CF and DF schemes for a discrete-time multiple relay
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system was presented in [6]; time-sharing and superposition
coding (SPC) approaches were also analyzed. In this paper we
analyze the symmetric diamond relay channel and prove that
time-sharing is superior to SPC. The optimal time-sharing
between CF and DF is shown, in terms of the division of time
and frequency allocations between CF and DF. In the optimal
solution, DF clearly must comply exactly with classical
water-filling, and CF must comply with the rules presented
in [5]. A combination of CF and DF, using a randomized
time-sharing strategy, was shown in [7] to improve the
performance of the single relay channel. While using CF, the
relays can be oblivious to the encoding scheme, which gives
the system various advantages that were discussed in [5]. Our
work also reveals the cost of obliviousness, which is relevant
in different scenarios such as 5G and 6G technologies that
are not fully oblivious. Preliminary results of this work were
presented in [8]. System rate optimization using Lagrange
multipliers and Karush–Kuhn–Tucker (KKT) conditions for
various problems was also studied in [9], but fronthaul rate
constraints were not included in [9].

The rest of the paper is organized as follows. In Section II
we present the system model. In Section III we discuss
the relevance of the information bottleneck problem to our
work; this problem is central in the analysis of CRAN and
other fundamental communication models for future wireless
communication systems, such as 6G and beyond [10]. We also
provide previous results of upper bounds and achievable rates
for the discrete-time model. We then describe time-sharing
and SPC approaches that combine CF and DF. In Section IV
we analyze the optimal solution of SPC and prove that the
time-sharing performance in the discrete-time frequency-flat
system model is equal or better than that of SPC. In Section V
we investigate a special case of the frequency-selective chan-
nel response filter, which is the discrete-time frequency-flat
diamond channel. We find an optimal solution using CF and
DF time-sharing and compare the optimal system rate to the
upper bounds and achievable rates described in Section III.

In Section VI we extend the time-sharing optimization
to a general frequency-selective channel response filter and
compare its performance to previous results. In Section VII
we analyze and prove properties of the optimal solution for
the frequency-selective case. Section VIII concludes the paper.

II. SYSTEM MODEL

The system models of the discrete-time frequency-flat dia-
mond channel and the frequency-selective diamond channel
are shown in Fig. 1a and Fig. 1b, respectively. The discrete-
time frequency-flat diamond channel is a special case of the
frequency-selective diamond channel with a uniform frequency
response. The transmitter encodes a message M ∈ [1 : 2nR]
using classic codes for a real Gaussian-distributed channel
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input X . X is then transmitted with an average power P
over two memory-less additive white Gaussian noise (AWGN)
channels, and each AWGN channel output is the input of
each relay. The channel is defined by PY1,Y2|X(y1, y2|x) =∏n

j=1 PY1,Y2|X(y1,j , y2,j |xj). The noise is zero mean with
variance 1, so in the frequency-flat case each relay channel
has a signal to noise ratio (SNR) equal to P . In the frequency-
selective case the noise’s one-sided power spectral density is
unity, and the channel response filter affects the SNR, as the
signal X(f) is multiplied by the frequency-selective channel
response filter H1(f) or H2(f) respectively. In this paper
we limit the model to the case where H1(f) = H2(f) =
H(f). Each relay has a rate limited encoder connected to
the destination decoder via a lossless fronthaul link Z . The
fronthaul link from each relay to the destination has a band-
width of C1 = C2 = C bits per channel use. The relays’
encoders do time-sharing between CF and DF, and they do
not communicate with each other. The CF and DF relay
operations are described in Section III. Given constraints on
the average power P , the limited fronthaul link bandwidth
C [bits / channel use] and the frequency-selective channel
response filter H(f), we want to find an optimal allocation of
power, fronthaul rate and time to CF and DF, that maximizes
the system rate, which is the mutual information between the
source X and the destination X̂ . Although we deal mostly
with a symmetric system model, an investigation of a more
general asymmetric system model is also interesting and
desirable. Therefore, in Section V-C we extend the discrete-
time frequency-flat symmetric diamond relay channel model
to an asymmetric channel model, and compare its performance
with the symmetric case.

III. PRELIMINARIES

In this section we discuss the information bottle-
neck (IB) problem, summarize previous results and describe
time-sharing and SPC schemes for the discrete-time
frequency-flat Gaussian diamond relay channel, as shown in
Fig. 1a.

A. Information Bottleneck

The IB method [11] can be used in order to find an optimal
mapping that maximizes the mutual information between the
source and the destination, while being constrained by the
fronthaul rate. For the single relay oblivious system, that is a
system in which the relay is oblivious of the error correction
codes, this method yields the optimal solution. Distributed
IB is an extension of the IB problem for the case of more
than one relay, and is related to various problems [10]. This
extension can be seen as the Chief Executive Officer (CEO)
remote source coding problem with logarithmic loss distor-
tion. Minimizing the fronthaul rate with a given distortion
constraint is replaced by maximizing the mutual information
between the source and the destination according to a given
fronthaul rate. The vector Gaussian CEO rate region and its
relation to the distributed IB was shown in [12] and [13].
Distributed IB is also related to the distributed compression
channel coding problem that is described in [2] and [6]. The

Fig. 1. Gaussian diamond relay channel scheme.

compression at each relay encoder is done according to a
fronthaul rate constraint, and the messages from the relays are
decoded at the destination using joint decoding. It is shown
in [2] that the distributed IB is optimal for the oblivious
case. To achieve an information throughput approaching the
mutual information, a standard error correcting code, external
to the system analyzed here, is used. For the non-oblivious
case, DF can be used by having the relays decoding the
messages, functioning as receivers in a broadcast channel.
We analyzed the optimal system rate of distributed CF over
frequency-selective channels in [5] and the same methodology
is used in this paper.

B. Compress and Forward

Oblivious relaying permits the relay to operate without
coordinating codebooks with the network. To support the
theoretical analysis, the oblivious processing is defined the-
oretically in [2] in terms of random codebooks. That is,
for each message the transmitter generates an independent
error-correcting codebook, and the codebook is known to
the receiver but not to the relay. As in [2], time-sharing
is enabled, so the relay knows the time-sharing parameter.
In each transmission block the relay i ∈ [1, 2] quantizes
its received message Yi, and encodes and transmits it to
the destination in the following transmission block using an
encoding function φi,CF : Yi → [1 : 2nC ] so that Zi = φi(Yi).
Z1 and Z2 are then sent through lossless fronthaul links to
the destination. The destination then decodes the message M
using a decoding function φD,CF : [1 : 2nC ] × [1 : 2nC ] → [1 :
2nR] so that M̂ = φD(Z1, Z2). The discrete-time frequency-
flat system rate RCF in [bits/channel use] when using CF with
joint decompression and decoding was shown in [6], and is
based on distributed IB as in [2]. Noisy network coding,
described in [14], was shown in [2] to be equivalent to the
oblivious CF processing, along with the above method. In our
analysis we use Eq. (1), which was derived in [6]. We define
here the SNR of each AWGN relay channel as PCF and the
fronthaul link rate limit in bits per channel use as CCF. The use
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of PCF and CCF in the time-sharing optimization is explained
in Section III-D.

RCF =
1
2

log2

[
1 + 2PCF · 2−4CCF ·

(
24CCF + PCF

−
√

P 2
CF + (1 + 2PCF) · 24CCF

)]
(1)

For an optimal frequency allocation solution we use the results
from [5], as discussed in Appendix A. The discrete-time
frequency-flat diamond channel was also investigated in [15],
where the following rate equation, which coincides with the
rate in Eq. (1), was derived

RCF = max
σ
s.t.

σ>0

RCF(σ)

RCF(σ) = min
(

1
2

log2(1 +
2PCF

1 + σ2
),

1
2

log2(1 +
PCF

1 + σ2
)

+ CCF − 1
2

log2(1 +
1
σ2

), 2CCF − log2(1 +
1
σ2

)
)

(2)

Here, the minimum is over all possible oblivious relay cut-
sets, similarly to the general diamond relay cut-set bound.
σ2 is the variance of zero mean Gaussian noise added to
the received signal at each relay, caused by the compression.
A lower σ2 value decreases the compression distortion, but
also consumes more fronthaul rate.

C. Decode and Forward

In this transmission scheme, each relay i ∈ [1, 2] decodes
its message Yi using a decoding function φDF : Y → [1 :
2nR] so that M̂ = M̂i = φDF(Yi). Each relay then sends half
of the message bits to the destination through a a noiseless
fronthaul link. The destination combines the bits received from
the relays and reconstructs the message M̂ . This scheme with
relays that know the codebook and decode the message was
also shown in [6]. The DF rate for the discrete-time frequency-
flat diamond channel is the known Gaussian broadcast channel
capacity with SNR1 = SNR2 = PDF

RDF =
1
2

log2(1 + PDF) [bits/channel use] (3)

and the required fronthaul rate is CDF ≥ RDF
2 = 1

4 log2(1 +
PDF) [bits/channel use]; this is because each relay is required
to send half of the message bits to the destination. The use
of PDF and CDF in the time-sharing optimization is explained
in Section III-D. An optimal frequency allocation solution is
derived in Appendix A.

D. Time Sharing

In the discrete-time frequency-flat diamond channel scheme
we use time-sharing of CF and DF. In the first phase, both
relays use DF over time TDF with allocated power PDF and
fronthaul rate CDF. This results in the rate of Eq. (3) during
the DF time. In the second phase both relays use CF over
time TCF with power PCF and fronthaul rate CCF. This results
in the rate of Eq. (1) during the CF time. The time-sharing is

Fig. 2. Time sharing between CF and DF.

described in Fig. 2, where PDF > PCF and RDF < RCF. In the
first time portion DF is used at the relays. During this time, the
transmitter power is PDF and the fronthaul rate used is CDF,
resulting in a system rate of RDF. An average system rate
of TDF · RDF is achieved with an average power allocation of
TDF ·PDF and an average fronthaul rate allocation of TDF ·CDF.
In the second time portion CF is used, and during this time the
transmitter power is PCF, the fronthaul rate used is CCF and
the system rate is RCF. An average system rate of TCF · RCF

is achieved with an average power allocation of TCF ·PCF and
an average fronthaul rate allocation of TCF ·CCF. The result is
a total average system rate of TDF · RDF + TCF · RCF, a total
average power allocation of TDF · PDF + TCF · PCF and a total
average fronthaul rate allocation of TDF · CDF + TCF · CCF.
The allocation of power, fronthaul rate and time considers the
constraints on the total average power P and average fronthaul
rate C. Further analysis is done in Sections V and VI.

E. Superposition Coding

In the SPC approach, the transmitter transmits the sum of a
DF letter and a CF letter. Each relay receives the DF and CF
letters with added noise. The DF letter is decoded at the relays
and then transmitted to the destination via the fronthaul links,
as described in Section III-C. This letter is then subtracted
from the relay input, so the remaining CF letter with the
channel noise is transmitted to the destination, which decodes
the CF letter using the information received from both relays.
As can be seen from this scheme, the CF operation remains
the same, because DF does not affect its operation, as it is
subtracted before the compression. However, the DF operation
is affected by the CF letter that acts as an additional noise to
the relay decoder. The system rate RSPC [bits/channel use] for
the discrete-time frequency-flat diamond channel with a SPC
scheme is

RSPC = RDF

(
PDF

1 + PCF

)
+ RCF(PCF, CCF) (4)

where DF and CF rate functions here are those written in Eqs.
(3) and (1), respectively.

F. Upper Bounds

For the general discrete-time frequency-flat diamond relay
channel, the cut-set upper bound of the system rate
Rcutset [bits/channel use] is a classical result shown in [16].
The rate region is

Rcutset ≤ I(X ; Y1, Y2)
Rcutset ≤ I(X ; Y1) + C2
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Rcutset ≤ I(X ; Y2) + C1

Rcutset ≤ C1 + C2 (5)

For the discrete-time frequency-flat diamond Gaussian channel
model with SNR1 = SNR2 = P and C1 = C2 =
C [bits/channel use] the rate region is

Rcutset = min
(

1
2

log2(1 + 2P ),
1
2

log2(1 + P ) + C, 2C

)
(6)

In this paper we compare the discrete-time frequency-flat
diamond channel results to the cut-set upper bound of Eq. (6),
and to a tighter upper bound from [17], that accounts for
the tension between information measures in relevant Markov
chains. For the discrete-time frequency-flat diamond channel
the bound from [17] is

Rnew upper bound

= max
θ∈[arcsin(2−C), π

2 ]
min

[
1
2

log2(1 + P ) + C + log2(sin(θ)),

+ 2C2 log2(sin(θ)),
1
2

log2(1 + P ) + min
ω∈( π

2 −θ, π
2 ]

h(ω; θ)
]

(7)

where

h(ω; θ) =
1
2

log2

(
[2P + sin2(ω) − 2P cos(ω)] · sin2(θ)

(P + 1) · [sin2(θ) − cos2(ω)]

)
.

IV. SUPERPOSITION CODING ANALYSIS

In this section we analyze the SPC approach for the discrete-
time frequency-flat diamond channel and compare its perfor-
mance to the time-sharing approach. We first write the power
and rate constraints using the discrete time equations

PDF + PCF = P

CDF + CCF = C (8)

We assume that DF utilizes power PDF and fronthaul rate
CDF. CF uses the remaining power and fronthaul rate that are
derived from Eq. (8); hence the CF power and fronthaul rate
are PCF = P −PDF and CCF = C −CDF. We also assume that
when DF is used, it is at the optimal point where

CDF =
1
2
RDF

(
PDF

1 + PCF

)
=

1
2
RDF

(
PDF

1 + P − PDF

)
(9)

Thus, the SPC system rate function can be written as a function
of only PDF using Eqs. (4), (8) and (9)

RSPC = RDF

(
PDF

1 + P − PDF

)

+ RCF

(
P − PDF, C − 1

2
RDF

(
PDF

1 + P − PDF

))
(10)

For system constraints of average power P and average
fronthaul rate C we get the following optimization problem

max
PDF

RSPC(PDF)

s.t. 0 ≤ PDF ≤ P

0 ≤ CDF ≤ C

CDF =
1
2
RDF

(
PDF

1 + P − PDF

)
(11)

Figure 3 shows the optimal solution as a function of the
fronthaul rate C for P = 3. As shown in Fig. 3, the optimal
solution for SPC assigns resources to either DF or CF - the
one that has the higher system rate. The following theorem,
Theorem 1, covers the general case.

Theorem 1: Given communication over the diamond relay
channel using a combination of DF and CF by superposition as
presented above and with any parameters, there always exists
a CF only or DF only scheme which performs at least as well.

Proof: In order to prove the theorem, we investigate the
first derivative of the SPC rate function of Eq. (10). The DF
rate is RDF = RDF(SNR) = RDF

(
PDF

1+P−PDF

)
. Using the

chain rule, we obtain the first derivative of the rate function

dRSPC

dPDF
=

dRDF

dPDF
+

dRCF

dPCF
· dPCF

dPDF
+

dRCF

dCCF
· dCCF

dPDF

Using that PCF = P − PDF and CCF = C − CDF = C − RDF
2

we get

dRSPC

dPDF
=

dRDF

dPDF
− dRCF

dPCF

∣∣∣∣
PCF=P−PDF

− 1
2
· dRDF

dPDF
· dRCF

dCCF

∣∣∣∣
CCF=C−RDF

2

(12)

For this continuous function, if an inner point 0 < PDF < P
is optimal, its first derivative equals zero at that point so the
following equation is fulfilled

dRDF

dPDF
·
[
1 − 1

2
· dRCF

dCCF

]
=

dRCF

dPCF
(13)

For a given power P and any 0 ≤ PDF ≤ P the only solution
of C for Eq. (13) yields

CSPC-TH =
1
4

log2(1 + P ) +
1
2

(14)

For a given power constraint P , the derivative in Eq. (12) is
a continuous function of C and PDF, so in each region of
C > CSPC-TH and C < CSPC-TH its value is either negative
or positive for every PDF value and does not change its
sign inside the region. Thus, the optimal solution would be
either PDF = 0 for a negative derivative or PDF = P for a
positive derivative. Substituting various points shows that for
C > CSPC-TH the derivative is negative and for C < CSPC-TH

the derivative is positive. This means that for C > CSPC-TH CF
only is chosen as the optimal solution and for C < CSPC-TH DF
only is chosen as the optimal solution. The rate CSPC-TH is also
the point where for an equal power constraint, the only DF and
only CF schemes achieve an equal system rate. Therefore, the
optimal solution for SPC is either DF only or CF only and the
transition is where their system rates are equal for the same
power allocation, so the system rate of the SPC scheme is
the maximal between them. This behavior is expected - DF
is preferred in the case of low fronthaul rate constraint and
CF is preferred in the case of high fronthaul rate constraint.
For example, the region line for P = 3 is at C = 1, which

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on May 19,2022 at 06:32:43 UTC from IEEE Xplore.  Restrictions apply. 



3100 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 5, MAY 2022

Fig. 3. Gaussian diamond relay system rates with superposition.

Fig. 4. First derivative region lines for different P values.

is expected to be the point where the CF and DF rates are
equal, so the SPC scheme switches between DF and CF there,
as shown in Fig. 3. The following figure, Fig. 4, shows the
first derivative regions for several power constraints, where
below the region lines are the regions where the first derivative
is positive and above the lines are the regions where it is
negative. The dashed line is C = CSPC-TH for P = PDF. The
CF only and DF only schemes can be obtained from the more
general time-sharing approach. Therefore, the time-sharing
performance is equal to or better than that of CF only and
DF only schemes, so by Theorem 1 it is equal to or better
than that of SPC. This result extends the analysis shown in [6]
for the diamond relay channel with full information about the
codebooks available at the relays using SPC and time-sharing.
The proof presented in this section shows the superiority of
time-sharing over SPC; hence, it enables us to perform our
analysis only on the time-sharing scheme and to simplify the
coding scheme.

V. FLAT FREQUENCY RESPONSE ANALYSIS

In this section we investigate the discrete-time frequency-flat
diamond relay channel shown in Fig. 1a, which is a special
case of the frequency-selective case shown in Fig. 1b. The
channel response filter is uniform over a frequency bandwidth
from zero to W = 1

2 [Hz] and is set to be H1(f) = H2(f) =
1, so it does not affect the transmitted signal X . For the
frequency-flat case, the optimization of allocating DF and

CF in separate frequency bands is equivalent to time-sharing
optimization for the discrete-time system. The discrete-time
time-sharing approach simplifies the optimization problem and
the derived results, so we use this approach for the frequency-
flat case. The more general approach that is required for the
frequency-selective case is described in Section VI. An inves-
tigation of an asymmetric frequency-flat system model is given
in Section V-C, where we compare its performance to that of
the symmetric system model.

A. System Rates

For the frequency-flat case we can readily infer from
Section VI-A that the rate equations equal the discrete-time
equations. Thus, the cut-set upper bound of the system is the
rate of Eq. (6), the CF rate is the rate of Eq. (1) and the DF rate
is the rate of Eq. (3). At low fronthaul rates the DF scheme
system rate is higher, while for high fronthaul rates the CF
scheme system rate is higher. It is evident that using a simple
switch between CF and DF and choosing the better one for
each fronthaul rate would offer better performance than using
only one of them. Figure 5 shows the above rates as a function
of the fronthaul rate C with P = 3.

B. Time Sharing

Now, we investigate the optimal solution of the time-sharing
scheme described in Section III-D. From Fig. 5 we can infer
that the optimal solution for the DF scheme with a given power
PDF allocates the minimal required fronthaul rate CDF that
achieves the DF rate in its time slot, because increasing the
fronthaul rate would not increase the system rate. As shown
in section III-C, the minimal fronthaul rate can be calculated
directly from the DF allocated power PDF, so CDF is not
a variable in the optimization problem. The time-sharing
optimization problem for the flat frequency response case is
provided in Eq. (15). The rates in Eq. (15) are those written
in Eq. (1) and Eq. (3), with SNR PDF and PCF, respectively.
The average SNR of the system, which is the summation of
the average SNRs of DF and CF, is limited by P .

max
PDF,PCF,CCF,TDF,TCF

TDF · RDF + TCF · RCF

s.t. PDF ≥ 0
PCF ≥ 0
CCF ≥ 0
0 ≤ TDF ≤ 1
0 ≤ TCF ≤ 1
0 ≤ TDF + TCF ≤ 1
0 ≤ TDF · PDF + TCF · PCF ≤ P

0 ≤ TDF · CDF + TCF · CCF ≤ C

CDF =
RDF

2
=

1
4

log2(1 + PDF) (15)

The optimal solution for both DF and CF in the
frequency-selective case is derived in Appendix A. The
solution is obtained using the Lagrange multipliers method
described in [5], in Section VI. The optimization problem
of the frequency-flat case can be solved by a simpler, two-
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Fig. 5. Gaussian diamond relay system rates without time-sharing, P = 3.

variable grid search, which we use in order to verify our
proposed optimization method results. The optimal solution
as a function of the fronthaul rate C with power constraint
P = 3 is shown in Fig. 6a. We use the MATLAB Symbolic
Toolbox in order to find the analytical expressions of the
solutions and the Lagrange multipliers region; then, we use
MATLAB Optimization Toolbox in order to find the optimal
solution. At low fronthaul rates the DF part is dominant. As the
fronthaul rate increases the system rate increases, but TDF

decreases, which indicates that the CF part becomes dominant
as it can use a high fronthaul rate and increase the total system
rate. This is true until the optimal system rate coincides with
the CF rate. From this behavior we can infer that CF consumes
more fronthaul rate resources than DF, and therefore is used
only when there is enough excess fronthaul rate. We applied
the same method in order to find the optimal solution as a
function of the power constraint P with relay to destination
rate C = 1, which is shown in Fig. 6b. At very low power
only CF is allocated and only for part of the total time. It is
expected that CF is preferred in this region; for example,
in [18] it was shown that for the single relay channel CF is
preferred over DF in the case where the relays are far from the
source, which is equivalent to a low power constraint in the
discrete-time frequency-flat diamond channel. As the power
increases, DF begins to be allocated so we have time-sharing
between CF and DF. TCF increases until it achieves a maximum
value. Then it decreases, reaches TDF and further decreases
to zero. From this behavior we can infer that DF consumes
more power resources than CF, and therefore is used only
when there is enough power. From Fig. 6 we can infer that
using time-sharing improves the system rate, and the largest
improvement is in the case where the power value is in the
mid values range; this is where the relays are at mid range
from the source. When the relays are close to the source the
time-sharing prefers DF for best performance, and when they
are far from the source it prefers CF.

C. Asymmetric System Model

In this section we extend the discrete-time frequency-
flat symmetric diamond channel to an asymmetric channel.
The asymmetric case generalizes the channel model and allows

Fig. 6. Gaussian diamond relay discrete-time frequency-flat optimal time-
sharing solution.

different power and fronthaul rate at each relay. We add a
subscript number to represent each relay, so PCF,i and CCF,i

are the CF power and fronthaul rate allocated to relay i. The
CF system rate for the asymmetric case is derived in [6]. For
the discrete-time frequency-flat asymmetric diamond channel
the CF system rate is

RCF,Asymmetric

= max
r1,r2≥0

min
[
1
2

log2

(
1 + PCF,1 · (1 − 2−2r1)

+ PCF,2 ·(1 − 2−2r2)
)

,
1
2

log2

(
1+PCF,1 · (1−2−2r1)

)

+ C2−r2,
1
2

log2

(
1+PCF,2 · (1−2−2r2)

)
+C1−r1,

×C1 − r1 + C2 − r2

]
(16)

An optimal solution can be obtained numerically, providing
the asymmetric system rate for CF, as shown in Fig. 7. In the
DF scheme, instead of decoding the same signal and sending
half of the bits, the system between the user and the relays
becomes a broadcast channel, which has a known capacity
region described in [16]. As in [16], we assume that PDF,1 ≥
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Fig. 7. Gaussian asymmetric diamond relay channel system rates with
P1 = 4, P2 = 2, C1 = 1.5C and C2 = 0.5C.

PDF,2. The DF capacity is achievable using SPC, that enables
relay 2 with the weaker reception to reliably decode part of the
message while relay 1 with the stronger reception is still able
to operate at a rate above the capacity of relay 2. The reliable
reception at relay 2 forces some decrease in the system rate
relative to the capacity of relay 1; this trade-off is governed by
the parameter α in Eq. (17). The DF rate for the asymmetric
case is

RDF,Asymmetric = max
α∈[0,1]

[
min

(
1
2

log2 (1 + α · PDF,1) , C1

)

+ min
(

1
2

log2

(
1+

(1−α) · PDF,2

α · PDF,2+1

)
, C2

)]
(17)

In the region where the system rate equals C1 +C2 the cut-set
upper bound is achieved, and this can only be achieved by
SPC. Thus, in addition to time-sharing and frequency resource
allocation, SPC becomes essential for the DF scheme in the
asymmetric case. The DF system rate is shown in Fig. 7. From
Eq. (5) we obtain the cut-set upper bound for the asymmetric
case

Rcutset,Asymmetric

= min
(

1
2

log2(1 + P1 + P2),
1
2

log2(1+P1)

+ C2,
1
2

log2(1+P2) + C1, C1+C2

)
(18)

Using Eqs. (16) and (17), we calculate the asymmetric system
rate using time-sharing with average power and fronthaul
rate constraints equal to those used in the symmetric case
shown in Fig. 6a. Figure 7 demonstrates the benefit of using
SPC in asymmetric DF scheme, which is the only method
we found that achieves the discrete-time diamond channel
capacity over a region described next. The asymmetric DF
scheme achieves the cut-set upper bound for 0 ≤ C ≤ 0.55,
while the symmetric DF scheme achieves the cut-set upper
bound only for 0 ≤ C ≤ 0.5, and the asymmetric DF
system rate is higher than for the symmetric DF. The CF
asymmetric system rate is higher for C ≤ 2. This affects
the time-sharing system rate of the asymmetric case, which
is higher than the system rate of the symmetric case for
0.5 ≤ C ≤ 2. However, for C > 2 the CF system rate of the
asymmetric scheme is lower. This affects the system rate at

high fronthaul rates, so that the asymmetric scheme has a lower
system rate than the symmetric scheme. This demonstrates a
trade-off for relay resource allocation. Asymmetric allocation
improves the system rate at mid fronthaul rates, while reducing
the system rate at higher fronthaul rates. We note that the
proof in Section IV showing that time-sharing is superior to
CF-DF SPC does not necessarily hold for the asymmetric case.
Moreover, while SPC is not used in the optimal solution of
the symmetric case, it is essential in the optimal solution of
the asymmetric case.

VI. FREQUENCY-SELECTIVE CASE ANALYSIS

We now investigate the frequency-selective diamond relay
system shown in Fig. 1b. In this case the channel response
filter is set as H1(f) = H2(f) = H(f). In addition to the
channel response there is an AWGN channel between the
transmitter and each relay. Each frequency band is treated as
a separate discrete-time frequency-flat diamond channel, so in
each frequency band the relays use time-sharing between CF
and DF as described in Section V.

A. Generalized Water-Pouring

In this paper we use the generalized water-pouring approach
that was explained and used in [5]. We derive the DF solution
in Appendix A and show that the additional time-sharing
variables do not affect the optimal solution. This allows us
to use previous results for CF, presented in [5]. To apply
the results from the real-valued frequency-flat channel to the
frequency-selective channel we decompose the channel, as in
standard water-pouring, into infinitesimally small frequency
bands of df [Hz] so the total bandwidth is W [Hz], e.g. [19,
Chapter 7], [20] and [21]. In each df band we have 2 ·df real
channel uses per second. The signal power in each df band
is S(f) · df , which leads to SNR = S(f) · |H(f)|2 for each
channel use and in each band. The signal power equation for
the frequency-selective case is

P =
∫ W

0

S(f) · df (19)

where P is in [Watt] and S(f) is in [Watt/Hz]. The system
rate R [bits/channel use] is

R =
∫ W

0

2R(f) · df (20)

where R(f) denotes the number of bits transferred per one
real channel use. The rate per bandwidth in [bits/(sec ·Hz)] is
then 2 · R(f). Similarly, C(f) denotes twice the number of
bits used by each relay per one real channel use, yielding

C =
∫ W

0

1
2
C(f) · 2df =

∫ W

0

C(f) · df (21)

where C is in [bits/sec] and C(f) is in [bits/(sec · Hz)].

B. System Rates

We now generalize the optimization problem of the
frequency-selective case. Based on the definitions above, the
rates are now derived for the frequency-selective case in
[bits/(sec ·Hz)], so integrating over the frequency band results
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in a total rate of [bits/sec]. We first derive the DF system rate
in [bits/(sec · Hz)] using Eq. (3) with SNR = S(f) · |H(f)|2

RDF(f) =
1
2

log2

(
1 + SDF(f) · |H(f)|2) (22)

and by assigning fronthaul rate per bandwidth of 1
2CDF(f)

to each real channel use we get the constraint CDF(f) ≥
RDF(f) = 1

2 log2(1+SDF(f)· |H(f)|2)[bits/(sec ·Hz)]. As dis-
cussed above the optimal DF fronthaul rate is the minimal
required value, which is a function of SDF(f) and H(f).
Similarly, we derive the CF rate in [bits/(sec·Hz)] using Eq. (1)

RCF(f) =
1
2

log2

[
1 + 2A(f) · 2−2CCF(f) ·

(
22CCF(f)

+ A(f) −
√

A(f)2 + (1 + 2A(f)) · 22CCF(f)

)]
(23)

where A(f) � SCF(f) · |H(f)|2.

C. Time Sharing

Now we write the frequency-selective optimization problem
for the system rate using time-sharing between DF and CF

max
SDF(f),

SCF(f),CCF(f),
TDF(f),TCF(f)

∫ W

0

[TDF(f)·RDF(f)+TCF(f)·RCF(f)]·2df

s.t. SDF(f) ≥ 0
SCF(f) ≥ 0
CCF(f) ≥ 0
0 ≤ TDF(f) ≤ 1
0 ≤ TCF(f) ≤ 1
0 ≤ TDF(f) + TCF(f) ≤ 1

0 ≤
∫ W

0

[TDF(f) · SDF(f) + TCF(f) · SCF(f)]

·df ≤ P

0 ≤
∫ W

0

[TDF(f) · CDF(f) + TCF(f) · CCF(f)]

·df ≤ C

CDF(f) = RDF(f) =
1
2

log2(1 + SDF(f)

·|H(f)|2) (24)

In Appendix A we show that TDF(f) and TCF(f) values do
not affect the gradient of the system rate function that is
maximized in Eq. (24) with respect to SDF(f), SCF(f) and
CCF(f). Therefore, we first calculate optimal solutions for
SDF(f), SCF(f) and CCF(f) using the KKT gradient equations
and then calculate optimal TDF(f) and TCF(f) values accord-
ing to the power and fronthaul rate constraints. We derive
the KKT gradient equations in Appendix A; it is evident
that CF power and fronthaul rate equations provide the same
solutions we derived in [5]. It was shown in [5] that two
possible solutions for CF power and fronthaul rate allocation
are derived from those equations, and that the CF system rate
function is concave for one of them and non-concave for the
other. It was proved in [22] that an optimal solution cannot be

in the non-concave region. Therefore, the optimal solution is
the one for which RCF(f) is concave with respect to SCF(f)
and CCF(f), and this solution is provided in [5]. RDF(f) is
concave with respect to SDF(f), as it is the known logarithm
function. Because RDF(f) does not depend on SCF(f) and
CCF(f) and also RCF(f) does not depend on SDF(f), they
are both concave with respect to SDF(f), SCF(f) and CCF(f).
Therefore, a linear combination of RCF(f) and RDF(f) is also
concave with respect to SDF(f), SCF(f) and CCF(f). Thus, the
total system rate is a concave function of SDF(f), SCF(f) and
CCF(f) and the optimization problem can be solved using the
Lagrange multipliers method, as we did in [5]. The Lagrangian
function is

L(f, SDF(f), SCF(f), CCF(f), λC, λS)

=
∫ W

0

[TDF(f) · RDF(f) + TCF(f) · RCF(f)] · 2df

−λS

[∫ W

0

[TDF(f) · SDF(f)+TCF(f) · SCF(f)] · df − P

]

−λC

[∫ W

0

[TDF(f) · CDF(f)+TCF(f) · CCF(f)] · df − C

]

(25)

This is because CDF(f) is a function of SDF(f) so the
Lagrangian function variables are SDF(f), SCF(f), CCF(f),
λC and λS. According to the KKT theorem we would find
a saddle point of the Lagrangian function, which is also an
optimal point of our optimization problem. The gradient of
the Lagrangian function for SDF(f), SCF(f) and CCF(f) is

∇L =
(

dL

dSDF(f)
,

dL

dSCF(f)
,

dL

dCCF(f)

)
(f) (26)

We know that frequency-selective optimal solutions
S∗

DF(f), S∗
CF(f) and C∗

CF(f) and optimal Lagrange multipliers
(λ∗

C, λ∗
S) must satisfy the following KKT conditions

∇L(f, S∗
DF(f), S∗

CF(f), C∗
CF(f), λ∗

C, λ∗
S)

= (0, 0, 0)

λ∗
S

[∫ W

0

[TDF(f) · S∗
DF(f) + TCF(f) · S∗

CF(f)] · df − P

]

= 0

λ∗
C

[∫ W

0

[TDF(f) · C∗
DF(f) + TCF(f) · C∗

CF(f)] · df − C

]

= 0∫ W

0

[TDF(f) · S∗
DF(f) + TCF(f) · S∗

CF(f)] · df − P ≤ 0∫ W

0

[TDF(f) · C∗
DF(f) + TCF(f) · C∗

CF(f)] · df − C ≤ 0

λ∗
C ≥ 0

λ∗
S ≥ 0 (27)

It is evident that Slater’s condition holds, so we can solve the
problem using a dual function. In Appendix A we calculate
SDF(f), SCF(f) and CCF(f) solutions from the gradient con-
dition of Eq. (27) as a function of λC and λS. Those solutions
require positive Lagrange multipliers values, therefore the
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power and rate equations in Eq. (27) equal zero. Using the
Lagrangian function from Eq. (25) we calculate the dual
function

g(λC, λS)
= max

SDF(f),
SCF(f),CCF(f)

L(f, SDF(f), SCF(f), CCF(f), λC, λS)

s.t. SDF(f) ≥ 0
SCF(f) ≥ 0
CCF(f) ≥ 0 (28)

In Appendix A we find the solution of SDF(f), SCF(f) and
CCF(f) for the optimization problem in Eq. (28). We next
substitute those solutions into Eq. (28), so this function of
only (λC, λS) would next be maximized in order to obtain the
optimal solution for our problem

max
λC,λS

g(λC, λS)

s.t. λC ≥ 0
λS ≥ 0 (29)

Using Eq. (32) and Eq. (34) from Appendix A we derive
bounds for the Lagrange multipliers that give an outer bound
of the required region - the region where both CF and DF are
feasible, and in which we would get a time-sharing solution.
Using those bounds we create a grid of λS and λC values.
However, this outer bound is not necessarily a region with only
time-sharing solutions to the problem, as it could also contain
regions where either CF or DF are feasible. This is shown
in Fig. 9. Thus, non-feasible grid solutions are eliminated
from the optimization. For the optimal pair of λS and λC

the equations in Appendix A provide SCF(f), CCF(f), SDF(f)
and CDF(f), but not TCF(f) and TDF(f). Using those power
and rate values we now optimize TCF(f) and TDF(f), using
linear programming (LP) methods. Their optimal solution must
satisfy the average power and rate constraints. The LP problem
for N frequency bands such that N ·Δf = W is described in
Eq. (30). The number of frequency bands N must be chosen
to be high enough such that the error in the discretization
of the frequency-selective channel response filter would be
negligible. This error would result in either a lower or a higher
value than the expected system rate. In order to choose N
we calculated the optimal system rate for increasing values
of N and observed the decrease in the discretization error
variation around the expected system rate. We then chose
a sufficiently large value of N = 100, which results in a
negligible discretization error. The Lagrange multipliers grid
size should also be chosen to be large enough such that the
error in finding the optimal point that maximizes the system
rate would become negligible. We did this by increasing the
grid size until it reached a negligible increase in the optimal
value of the system rate.

max
TDF(i),TCF(i)

N∑
i=1

[TDF(i)·RDF(i)+TCF(i)·RCF(i)] · 2Δf

s.t. 0 ≤ TDF(i) ≤ 1
0 ≤ TCF(i) ≤ 1

0 ≤ TDF(i) + TCF(i) ≤ 1

0 ≤
N∑

i=1

[TDF(i) · SDF(i) + TCF(i) · SCF(i)]

· Δf ≤ P

0 ≤
N∑

i=1

[TDF(i) · CDF(i) + TCF(i) · CCF(i)]

· Δf ≤ C (30)

We now summarize the optimization procedure

1) Set the average power and rate constraints P and C, the
frequency-selective channel response filter values, the
Lagrange multipliers grid size and the the number of
frequency bands N .

2) For each point on the grid of all possible λC and λS,
first calculate optimal values of SCF(f), CCF(f), SDF(f)
and CDF(f) for each frequency band using the solutions
written in Appendix A.

3) Using those values, solve the LP problem in order to
find optimal values of TCF(f) and TDF(f) so the time
allocation for CF and DF satisfies the average power and
rate constraints.

4) The system rate is the function value of the LP problem
using the optimal solution that was found in the previous
step.

5) Choose the grid point that maximizes the system rate.

D. Results

In this section we show some results of optimal allocation.
First, we examine a channel response filter monotonically
increasing with frequency H(f) = α f

W with α = 0.4. With
bandwidth of W = 10[Hz] and with power and rate constraints
P = 100 and C = 9. The allocation result is shown in Fig. 8a.
The frequency domain is divided into three regions. The first
region with low filter values has no allocation, the second
region has only DF allocation, and the third region has only
CF allocation. Between the regions there are two points of
time-sharing, the point between the first and the second regions
does partly DF and the point between the second and the third
regions does time-sharing between CF and DF. This behavior
corresponds to region 1 of Proposition 1. In Fig. 8b we show
the allocation for a bandwidth of W = 10[Hz], P = 100 and C
= 9 with the filter used in [5], which is H(f) = Hmax−HA(f)
where

Hmax = max
f

HA(f)

with HA(f) = α1N(f, f1, 1)+α2N(f, f2, 1), and N(x, μ, σ2)
is the Gaussian curve value with mean μ and variance σ2 at
point x, f1 = α1W, f2 = α2W, α1 = 0.25 and α2 = 0.75. The
time-sharing optimal solution shows that for each frequency
we choose either CF, DF or neither and the partition between
the regions would be at a specific filter value. The total
system rate achieved with optimal time-sharing between CF
and DF is 7.6, compared to a lower value of 6.8 achieved with
only CF in [5]. This is closer to the oblivious collaborative
encoding upper bound rate of 8.16 that was calculated in [5].
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Fig. 8. Gaussian diamond relay frequency-selective optimal time-sharing
solution.

The optimal solution allocates power and fronthaul rate in
frequency bands where the CF only solution in [5] would not
allocate, where the filter has lower values. Compared to the
CF only solution, in the time-sharing solution the normalized
fronthaul rate allocation of CF is higher, and the normalized
power allocation of CF is lower, so the time-sharing affected
the CF solution allocated values.

VII. OPTIMAL SOLUTION PROPERTIES

Next, we analyze the behavior of the optimal solution for
the frequency-selective case.

Lemma 1: The solution for each Lagrange multipliers point
divides the channel frequency bands into two types according
to the filter value at each band and a filter value threshold
HTH.

1) Where SDF(f) > SCF(f) for H(f) < HTH.
2) Where SCF(f) > SDF(f) for H(f) > HTH.

Proof: The proof is shown in Appendix C.
In Fig. 9 we show the region border lines of the solutions on

the Lagrange multipliers grid. Below the CF and DF solution
region lines are the regions where each solution is feasible,
and we define a non-feasible solution as either a negative or

Fig. 9. Regions of CF and DF solutions on the Lagrange multipliers grid;
below the lines are the regions where CF solution is feasible, DF solution is
feasible, SCF > SDF, RCF > RDF and CCF > CDF, respectively.

an imaginary value. We next describe the regions denoted by
bold numbers in Fig. 9.

1) This region is where both CF and DF are allocated and
CF has higher power, fronthaul rate and system rate.

2) In this region only CF is allocated.
3) Here, CF has a higher fronthaul rate.
4) DF has higher power, fronthaul rate and system rate.
5) Only DF is allocated.

The lines’ equations are calculated in Appendix B.
In region 3 it can easily be shown that DF is preferable by
assigning in its system rate equation a power of SCF that is
lower than SDF there. This does not change the system rate
region, thus allowing us to compare the solutions by only the
required fronthaul rate. The DF fronthaul rate is smaller in
this region; therefore, the optimal solution would prefer DF in
region 3. Next, we refer to the case of two frequencies with
optimal allocation, and let us suppose that in each one of them
there is CF and DF part. To generalize this, we divide each
frequency into part A and part B, each can be either DF or CF.
Theorem 2 shows the optimal solution behavior in this case.

Theorem 2: We define A and B to denote CF and DF,
respectively, or in reverse order, that is, A may be CF and B
denotes DF or A may be DF and then B denotes CF. We also
define � > 0 as H(f2) = (1 + �)H(f1) and K > (1 + �)2 as
SA(f1) = K · SB(f2).

Then, for two frequency bands with different filter values
such that H2 = H(f2) > H(f1) = H1 and SA(f1) > SB(f2),
and if there is some time in f2 allocated to B, then A is not
allocated in f1 in the optimal solution.

Proof: The proof is shown in Appendix D.
Using these results we now state Proposition 1.
Proposition 1: Let the channel response filter H(f) be

continuous in f . As was stated in Lemma 1, the optimal
(λC, λS) point divides the filter values into 2 regions. The
optimal allocation in those regions is

1) Region of higher H(f) values, where SCF > SDF and
CF is allocated at the higher channel gains while DF
is allocated at the lower ones. Also, a band of lowest
channel gains may be left unused.
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2) Region of lower H(f) where SCF < SDF and only DF
is allocated. A band of lowest channel gains may be left
unused.

Proof: For any infinitesimally close channel gains the �
condition on K is fulfilled. Then, by Theorem 2, in the region
of higher H(f) any CF allocation migrates to all higher gain
frequencies that have DF allocation. In the region of lower
H(f) values DF is preferred, as explained in Theorem 2.

VIII. CONCLUSION AND OUTLOOK

In this work the band-limited symmetric primitive diamond
relay channel is considered, where a single user is connected to
two non-cooperating relay nodes via symmetric band-limited
and filtered Gaussian channels, while the relay nodes are con-
nected to the final-end receiver via ideal fronthaul links with a
given capacity. We consider and optimize achievable schemes
that account for decode and forward (DF) and distributed
compress and forward (CF), and compare the achievable rates
to the cut-set upper bound and to the upper bound from [17].
We attempted to combine CF and DF by SPC at the same
time and frequency resource, similar to the classical scheme
used for broadcast channels, and proved that this approach
yields no improvement over time-sharing. From the discussion
on the optimal solution properties we can conclude that for
a frequency-selective channel response filter with allocation
for both CF and DF, higher filter values would prefer CF
allocation and lower filter values would prefer DF allocation.
We show that by using CF and DF time-sharing we can
increase the total system rate relative to using only one of
them. Frequency bands with a filter value between CF and
DF allocations would have time-sharing, and other frequencies
would have either CF, DF or no allocation. We also view the
discrete-time frequency-flat channel model with time-sharing
optimization to be equivalent to the uniform filter case of
the frequency-selective model, where each frequency does
either CF or DF. The time-sharing optimization shown for the
discrete-time frequency-flat channel is equivalent to frequency-
sharing optimization, that is, part of the uniform bandwidth
uses CF and the other part uses DF. The optimal values
of those parts would be equal to the time values of the
optimal time-sharing solution for the discrete-time frequency-
flat channel model, considering the appropriate power and rate
constraints. Therefore, the diamond network optimization done
in this paper is beneficial even for uniform filters, which is not
the case where the classical water-pouring scheme is used.
Theoretical results addressing the primitive diamond channel
may carry practical implications for future cell-free wireless
technology [23]. The general methodology presented in this
paper could be used to examine a large variety of specific
models of practical interest, and models that will evolve in
future beyond 5G technologies. One example is orthogonal
frequency-division multiplexing (OFDM), where each of our
incremental frequency bands can be adjusted to fit one OFDM
sub-carrier and the solution would be accurate without the
need to approximate a continuous frequency response by very
large number N of frequency bands. For future work we sug-
gest examining whether binning can improve the achievable
rates. In this case the relays decode part of the information
by identifying the bin to which that information belongs, and

the distributed compression is then aided by the bin identity,
which is forwarded by both relays to the destination. List
decoding is another possible future approach. This problem
is also open in the discrete-time primitive diamond channel
(which is equivalent to the frequency-flat channel model).

APPENDIX A
OPTIMAL SOLUTION FOR CF AND DF WHEN

TCF AND TDF ARE GIVEN

Here, we develop the Lagrange multipliers solutions for CF
and DF allocations for the frequency-selective case. We denote
H(f) = H for simplicity. We first calculate the gradient
equations using Eqs. (25),(26),(27). In each derivative either
TCF or TDF multiply all arguments; therefore, we assume
that 0 < TCF < 1 and 0 < TDF < 1 so we can cancel
them out while deriving the equations where the gradient
equals zero. Because TCF and TDF can have values near 0 and
1 with a negligible difference from them, this assumption has
a negligible affect on the solution. The gradient equations for
SDF, SCF and CCF are

dL

dSDF
= 2 · dRDF

dSDF
− λS − λC · |H |2

2 · ln(2) · (1 + SDF|H |2) = 0

dL

dSCF
= 2 · dRCF

dSCF
− λS = 0

dL

dCCF
= 2 · dRCF

dCCF
− λC = 0 (31)

From the gradient equations we derive SDF, SCF, CCF solutions
as functions of the Lagrange multipliers. From the SCF and
CCF equations we derive the same solutions that were derived
and investigated in [5]. The CF equations provide two solu-
tions. Calculating the power and fronthaul rate region where
the CF rate function is concave shows that for solution 1 the
CF system rate function is concave and for solution 2 the
CF system rate function is non-concave. As we mentioned in
Section VI, it was proved in [22] that the optimal solution
is the one for which the CF system rate function is concave,
so we use solution 1. The region of the Lagrange multipliers
that was derived in [5] using the concavity of the rate function
is written in Eq. (32).

0 ≤ λC ≤ 2

0 ≤ λS ≤ 2|H(f)|2
ln(2)

(32)

The DF solution can be calculated from the first equation

SDF =
2 − λC

2λS ln(2)
− 1

H2

CDF =
1

2 ln(2)
ln
(

H2(2 − λC)
2λS ln(2)

)
(33)

From those solutions we can derive the constraints on the
Lagrange multipliers. From the CDF solution we require that
the expression inside the logarithm is positive. From the
requirement that SDF > 0 we derive another constraint, so the
constraints on the Lagrange multipliers for DF solutions are

0 ≤ λC < 2

0 < λS <
H2(2 − λC)

2 ln(2)
(34)
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APPENDIX B
SOLUTION REGION LINES EQUATIONS

Here we derive the solution region lines equations that are
shown in Fig. 9 for H = 1. The solution region of DF is
where SDF has real and positive values. Using Eq. (33) we
can easily find the DF region line because only a real solution
is possible; therefore, the border line is where SDF = 0. This
equation gives the line

λDF Region
S =

H2(2 − λC)
2 ln(2)

(35)

Using SCF solution 1, which is provided in [5], the CF feasible
region is where the SCF solution is real and positive; therefore,
its border line equation is where the solution is either negative
or complex. It can be easily shown that for every λC > 0, λS >
0 and for

H2λC − 2H2 + λS ln(2) > 0

the numerator of the SCF solution is positive, and thus the
solution is also positive; therefore, the Lagrange multipliers
line for positive SCF solution is

λS =
H2(2 − λC)

ln(2)
(36)

For a real value solution the expression inside the square
root in the numerator should be non-negative. The square root
expression in the numerator equals zero for

λS =
H2

ln(2)

(
3λC + 2 ± 2

√
2 ·
√

λC(λC + 2)
)

(37)

Equation (37) provides two lines. The line with the positive
sign has greater λS values than the upper bound in Eq. (32)
for λC ≥ 0, so only the negative sign line is relevant. The
difference between the numerators of Eq. (36) and the line
with the minus sign from Eq. (37) is

2 − λC −
(
3λC + 2 − 2

√
2 ·
√

λC(λC + 2)
)

= 2
√

2 ·
√

λC(λC + 2) − 4λC

= 4λC

(√
λC(λC + 2)

2λ2
C

− 1

)

This difference is non-negative for 0 ≤ λC ≤ 2, so we can
conclude that the line of Eq. (36) is always above the minus
sign line of Eq. (37). Therefore, the region line for the CF
solution is the line with the minus sign from Eq. (37)

λ
CF Region line
S =

H2

ln(2)

(
3λC+2−2

√
2·
√

λC(λC+2)
)

(38)

In order to find the line where SCF = SDF, we first find the SCF

value over the CF region line. Considering that lower Lagrange
multiplier values result in higher power and fronthaul rate
values, we can simplify our analytical examination using the
SCF value on the CF region line. This value is obtained by
substituting λS = λCF Region line

S in the SCF expression.

SCF Region line
CF =

2 − λC

4H2(3λC + 2 − 2
√

2λC(λC+2))
− 1

4H2

(39)

Using Eq. (39) and the SDF solution from Eq. (33), we can
find the line where SDF = SCF Region line

CF .

λ
SDF=SCF Region line

CF
S =

H2(2 − λC)
3 ln(2)

×
[
2 − 2 − λC

4λC + 4 − 3
√

2λC(2 + λC)

]

(40)

Above this line S
CF Region line
CF > SDF and for each λC value

the SCF values inside the CF region are higher than those on
the region line, so SCF > SDF in this region. Below that line
there are SDF values that are greater than SCF. There, we can
analytically find the line where SCF = SDF, which is Eq. (41).
Combining Eq. (40) and Eq. (41) we get the border line where
SCF = SDF.

λSCF=SDF
S =

H2(2 − 3λC)
2 ln(2)

(41)

Using a similar approach, we find CCF on the CF region line.

CCF Region line
CF

=
ln
(

(4−λ2
C)(3λC+2−2

√
2λC(λC+2))

2λC(7λ2
C+16λC+4−5λC

√
2λC(λC+2)−6

√
2λC(λC+2)

)
2 ln(2)

(42)

Next, we find the line where CCF Region line
CF = CDF

λ
CDF=CCF Region line

CF
S

=
H2λC(7λ2

C + 16λC + 4)−H2λC(3
2λC+1)(5λC+6)

ln(2)(λC + 2)(3λC + 2 − 2
√

2λC(λC + 2)

+
H2λC(5λC + 6)
2 ln(2)(λC + 2)

(43)

Above this line CCF Region line
CF > CDF, and inside the CF

region the CCF values are larger than on the region line;
therefore, CCF > CDF over this region. Below that line
there are CDF values that are larger than CCF. There we can
analytically find the line where CCF = CDF, which is Eq. (44).
Combining Eq. (43) and Eq. (44) we get the border line where
CCF = CDF.

λCCF=CDF
S =

H2(3λC − 2
√

3λC − 2
√

3 + 4
ln(2)

(44)

Using Eq. (39) and Eq. (42) we obtain RCF Region line
CF and then

find the line equation where it equals RDF. This line has the
same behavior as Eq. (40) and meets the CF region line at the
same point. Using that the system rate increases with power or
with fronthaul rate increase, we can use a similar explanation,
used above for the power and fronthaul rate regions, also for
the system rate region. Calculating the line where RCF = RDF

gives Eq. (41). Therefore, the lines where RCF = RDF and
SCF = SDF are coincident.
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APPENDIX C
LEMMA 1 PROOF

From the Lagrange multipliers equations in Eq. (27) we get

λS = 2
dRCF

dSCF

λC = 2
dRCF

dCCF

and define

λW = 2
dRDF

dSDF

Now, assuming that we are at the optimal solution point,
we examine two dT intervals, which can be on two different
frequency bands or at the same frequency band. The first
dT interval uses DF and the second uses CF. The solution
is ensured to be optimal so that any modification would
not improve the system performance. Now, we increase the
DF power SDF by �. This increases the rate of this interval
by ΔDF = 1

2�λW. A fronthaul rate of 1
2�λW at each relay

is required to support this. This resources increase in the
DF part must be reduced from the CF part, reducing the
CF rate by ΔCF = 1

2�λS + 1
4�λCλW. At the optimal point

the gradient equals zero, so small modifications would not
change the system rate. Therefore, the rate change must satisfy
ΔDF = ΔCF. We get

λW =
λS

1 − 1
2λC

(45)

We note that Eq. (45) can be derived from Eq. (31). Both
equations express the global coupling between the CF and DF
allocations. Next, using Eq. (22) we can calculate the power
allocation for the DF part. The DF rate derivative is

λW =
dRDF

dSDF
=

|H |2
2(1 + SDF|H |2) · ln(2)

Thus, the DF power is

SDF = max
(

0,
1

2λW · ln(2)
− 1

|H |2
)

The CF part allocation is calculated as in [5]. In order to
complete the proof, we now investigate the power allocation
region where SCF > SDF along with the rate allocation
region where CCF > CDF and the system rate region where
RCF > RDF. Figure 10a shows the boundary lines where
RCF = RDF (red) and SCF = SDF (blue) on the CF power
and fronthaul rate grid. Above the lines is the region where
DF has a larger value. The contours show several SDF values.
It is interesting to see that the lines coincide, and as we show
next this creates a strict boundary between two regions in
each we prefer either CF or DF for the optimal allocation.
In Fig. 10b we show the power solution region as a function
of the channel response filter value. Below the lines is the
region where SCF > SDF. The optimal solution is a specific
point on this grid. The region gets smaller as the filter value
reduces. This behavior explains that DF allocation is preferred
at lower filter values, while CF allocation is preferred at
higher filter values. Each Lagrange multipliers point lies on
a single line which is defined by a specific filter value.

Fig. 10. Frequency-selective optimal solution region lines.

Fig. 11. Two frequency time portion replacement.

By defining this filter value as H(f) = HTH we complete the
proof.

APPENDIX D
PROOF OF THEOREM 2

Suppose we move a time portion of A from f1 to f2 and
move a corresponding duration time portion of B from f2 to
f1 as shown in Fig. 11. We adjust the transmitted powers of
the A and B shifted portions so that the channel output power
is preserved, and the system throughput and the fronthaul bit
rates are conserved. Therefore, we get the following equations
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where the tag mentions the power at the other band.

H2
2SB2 = H2

1SB2�

⇒ ΔSB2� =

[(
H2

H1

)2

− 1

]

SB2 = [2� + �2]SB2

H2
1SA1 = H2

2SA1� ⇒ −Δ

SA1� =

[
1−
(
H2

H1

)2
]

SA1 =
[
1− 1

(1+�)2

]
SA1

=
2� + �2

(1 + �)2
SA1 >

2� + �2

(1 + �)2
K · SB2

>
2� + �2

(1 + �)2
(1 + �)2 · SB2 = [2� + �2]SB2 = ΔSB2�

The inequality indicates that we have positive power remaining
for allocation from this process. Using this excess power in
the CF part we can increase the system throughput. However,
this is a contradiction to the optimal point assumption.
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