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Abstract—Motivated by the emerging technology of oblivious
processing in remote radio heads with universal decoders, we
formulate and analyze in this paper a compound version of
the information bottleneck problem. In this problem, a Markov
chain X → Y → Z is assumed, and the marginals PX and PY

are set. The mutual information between X and Z is sought to
be maximized over the choice of the conditional probability of
Z given Y from a given class, under the worst choice of the
joint probability of the pair (X,Y) from a different class. We
provide values, bounds, and various characterizations for specific
instances of this problem: the binary symmetric case, the scalar
Gaussian case, the vector Gaussian case, the symmetric modulo-
additive case, and the total variation constraints case. Finally, for
the general case, we propose a Blahut-Arimoto type of alternating
iterations algorithm to find a consistent solution to this problem.

I. INTRODUCTION AND PROBLEM FORMULATION

The information bottleneck (IB) methodology [1] provides
a universal distortion measure for data compression when the
desired distortion measure is either unavailable or cannot be
defined. Nonetheless, in most practical cases, the distribution
of the source involved in the IB problem is also not known
with perfect accuracy (e.g., when it is estimated from a finite
sample). In this paper, this aspect motivates us to introduce
a compound version of the IB problem, in which the source
distribution is only known to belong to a given class, and the
representation chosen by the IB method is chosen to be the
best possible under the worst-case choice within the class.

We consider the compound remote source coding system
[2]–[4]. Let PX be a source of information generating the
sequence Xn. The encoder observes Yn which is a noisy
version of Xn. Then, the encoder produces a compressed
representation M, which is later on mapped by the decoder
to the reconstructed sequence Zn. The distortion is evaluated
between Xn and Zn, while the rate is the relative number of
bits required to represent M. The encoder’s goal is to find
a compression strategy that extracts from Yn the relevant
information regarding Xn, when the distribution of the channel
PY|X is not known in advance and cannot be accurately learned.
This compound setting generalizes the classical remote source
coding model studied by Dobrushin and Wolf [5], [6].

This model motivates one to formulate a compound version
of the information bottleneck (IB) optimization problem [1].
Specifically, let (X,Y) be a pair of random variables and
fix their marginals to PX and PY, respectively. Consider all
random variables Z satisfying the Markov chain X → Y → Z.
Unlike the standard IB problem, in which the joint distribution
of PXY is fixed, here we consider an uncertainty set for this
joint distribution, and aim to solve the following problem:

Rcom
PXPY

(PXY ,DZ|Y) = sup
PZ|Y∈DZ|Y

inf
PXY∈PXY

I(X;Z). (1)

In this paper, we take the set DZ|Y as the set of possible
representations, and the set PXY is the uncertainty set of the

joint distribution. The class DZ|Y will be the usual IB class,
i.e., DZ|Y =

{
PZ|Y : I(Y;Z) ≤ C2

}
, or a restricted subset of

this class, with an additional structure. The class PXY will
take one of the following variants:

• Privacy Funnel (PF): PXY = {PXY : I(X;Y) ≥ C1} as
motivated by capacity-guaranteed links;

• Minimal Correlation: PXY = {PXY : E [XY] ≥ ρ1} as
motivated by the Gaussian setting;

• Total Variation (TV): PXY =
{PXY : dTV(PXY,P1) ≤ D1} as motivated by finite
data samples analysis, and P1 is some nominal
distribution;

where all are constrained to the given marginals, i.e.,∑
x PXY(x, y) = PY(y) and

∑
y PXY(x, y) = PX(x). For the

above sets of optimization, we have max min in (1).
As said, choosing the class PXY to a singleton recovers

the standard IB problem [1], which for discrete alphabets was
initially studied in [7] as a method to characterize common
information [8]. The IB method is essentially a remote source
coding problem [5], [6], choosing the distortion measure as
the logarithmic-loss, and thus recovers remote source coding
by taking DZ|Y as a maximal distortion set.

In addition, PF, a dual problem to the IB framework [9],
[10], can also be recovered from (1) by setting PXY as the
PF family (removing the marginalization constraint on PX)
and DZ|Y to contain a singleton. Therefore, the problem
introduced in (1) is a composition of the IB and PF problems.
This observation makes the problem in (1) rather delicate –
e.g., if (X,Y) are jointly Gaussian, even the standard PF rate
is zero since one can use the channel from Y to Z to describe
the less significant bits of Y [11]. We also mention that the
PF is directly connected to information combining (IC) [12],
[13]. For example, if the channel from Y to X is a binary
memoryless symmetric (BMS) [14, Ch. 4], then by [12], PZ|Y
is a binary erasure channel (BEC). Furthermore, the additive
noise Helper problem, studied in [15], is directly linked to
the PF. By reformulating the former as an IC problem, the
solution follows directly, as was demonstrated in [11].

The IB problem can be approached via several strategies.
When (X,Y) is a doubly symmetric binary source (DSBS)
with transition probability p [16], it can be shown that binary
symmetric channels are optimal via Mrs. Gerber’s lemma
[17] (see also the examples in [7] and [12]). When (X,Y) are
jointly multivariate Gaussians, it was shown in [18] that the
optimal distribution of (X,Y,Z) is also jointly Gaussian. The
optimality of the Gaussian test channel can also be proved
using EPI or utilizing I-MMSE and Single Crossing Property
[19], [20]. In a different and more general case, when (X,Y,Z)
are discrete random variables, a locally optimal PZ|Y can be
found by iteratively solving a set of self–consistent equations.
A generalized Blahuto-Arimoto algorithm was proposed to

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 2475

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-2

15
9-

1/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
50

56
6.

20
22

.9
83

48
12

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 22,2022 at 10:10:14 UTC from IEEE Xplore.  Restrictions apply. 



solve those equations [1], [21]–[23]. Finally, a particular case
of deterministic mappings from X to Y was considered in [24].

In this work, we address the compound setting for the IB
problem with the goal of providing similar results. First, we
address the DSBS and Gaussian (scalar and vector) settings.
Second, we consider general modulo additive channels, with
modulo additive representations, and provide various bounds
on the compound IB function with PF-based compound set and
then with TV-based compound set, and again derive various
bounds on the compound IB function. Finally, we return to
the general discrete alphabet case with a PF-based compound
set and propose an alternating algorithm, which essentially
iterates between the maximization over PZ|Y (an IB problem)
and minimization over PXY (a PF problem). Omitted proofs
and other details are in the full version of this paper [25].

Related work: The IB framework is closely related to a
variety of problems in information theory, such as remote
source coding [6], conditional entropy bound (CEB) [7],
common reconstruction [26], and information combining
(IC) [12], [13], see an overview in [16]. Applications of
information bottleneck method in machine learning are
detailed in [18], [27]–[32]. Furthermore, the IB problem
connects to many timely aspects, such as capital investment
[33], distributed learning [29], deep learning [27], [28], [30],
[31], [34]–[36] and convolutional neural networks [37], [38].

II. BINARY SYMMETRIC AND GAUSSIAN CHANNELS

A simple way to obtain precise analytical solutions to (1)
is by establishing a saddle point property [39, Sec. 5.4.2].

Lemma 1 (Optimality of Saddle Point): suppose there
exists a saddle point (w̃, z̃), satisfying f(w̃, z̃) =
infw∈W f(w, z̃) and f(w̃, z̃) = supz∈Z f(w̃, z), then
f(w̃, z̃) = supz∈Z infw∈W f(w, z).
In the rest of this section we provide basic examples for which
full characterization of the problem in (1) is known.

A. Binary Y

Consider X and Y being both Ber(0.5) random vari-
ables with PF type of PXY , and C1, C2 ∈ [0, log 2]. Let
Rbin(C1, C2) denote the compound IB with a PF constraint for
this setting. In such case, (X,Y) are restricted to be distributed
as a DSBS with parameter α, i.e.,

PXY(x, y) =
1

2
(α · 1(x ̸= y) + (1− α)1(x = y)), (2)

where α = h−1
b (1−C1), with hb(·) being the binary entropy

function and h−1
b (·) its inverse. Furthermore, the optimal PZ|Y

in this case is a BSC with parameter β = h−1
b (1 − C2) [7].

The compound rate is thus Rbin(C1, C2) = 1 − hb(α ∗ β),
where ∗ is the binary convolution operator.

Next, assume that Y is Ber(0.5), but there are no constraints
on X nor Z. In such case the optimal PZ|Y is a BSC with
parameter δ = h−1

b (1−C2), while the optimal PX|Y is a BEC
with parameter ϵ = 1 − C1. The optimal rate in such case
is Rbin(C1, C2) = C1 · C2. This result can be established by
combining [7, IV.C] with [12, Thm. 1] and Lemma 1.

B. Scalar Gaussian Y

We proceed to consider another fundamental scenario
where the marginal distributions of X and Y are both
Gaussian. Note that in contrast to the symmetric Ber(0.5)
setting, which restricts the channel from X to Y being a
BSC, here, Gaussianity of the marginals does not imply the
joint distribution of (X,Y) being Gaussian [40, Ch. 4.7].
Thus, the result of the following theorem is not trivial. Let
Rsc-G(ρ, C) denote the value of (1) with PXY being the
minimum correlation class with parameter ρ > 0 and QZ|Y
being the IB bottleneck class with parameter C ∈ R.

Theorem 1: Rsc-G(ρ, C) = − 1
2 log(1−ρ

2ρ2C), with ρ2C = 1−
2−2C , and jointly Gaussian (X,Y,Z) is the unique optimizer
of (1).

C. Vector Gaussian (X,Y)

Now, suppose that X and Y are jointly Gaussian random
vectors of dimension n. Let Rvec-G(C1, C2) denote the value
of (1) with PXY being the PF constraint with capacity C1 ∈ R
and QZ|Y is the IB bottleneck class with capacity C2 ∈ R.

Theorem 2:

Rvec-G(C1, C2) = −n

2
log(1− ρ21ρ

2
2), (3)

where ρ2k = 1−2−2Ck/n for k ∈ {1, 2}. The optimal triplet
(X,Y,Z) is jointly Gaussian with independent components.
In particular, this result establishes that the worst case channel
PY|X is an Additive White Gaussian Noise, and its optimal
representation PZ|Y is also white.

III. MODULO ADDITIVE CHANNELS WITH PF
CONSTRAINT

In this section, we return to the general discrete alphabet
case, yet we restrict our attention to a symmetric setting with
the following assumptions:

PXY ≜{PXY :PX = un,Y = X⊕W, H(W) ≤ η1,X ⊥ W} ,
(4)

QZ|Y ≜
{
PZ|Y : Z = Y ⊕ V, H(V) ≥ η2,Y ⊥ V

}
, (5)

where un is the probability vector of uniform distribution on n,
and ⊥ stands for statistical independence. This setting implies
|Y| = |Z| = n. Moreover, it also holds that Z = X⊕W ⊕ V.
Using H(W) ≡ H(PW) and H(V) ≡ H(PV), we observe
that I(X;Z) = log n − H(PW ∗ PV), where ∗ is the n-ary
convolution operator, and η1, η2 ∈ [0, log n]. Thus, the solution
to (1) is equivalent to the solution of

Rmod(η1, η2) ≜ min
PV :H(PV)≥η2

max
PW :H(PW)≤η1

H(PW ∗ PV). (6)

In (4) we have confined the channel PZ|Y to be modulo
additive, which may be too restrictive in general. Nonetheless,
when the IB function is strictly convex, the modulo additive
channel assumption for QZ|Y can be relaxed. Indeed:

Proposition 1: Fix a joint pmf PXY ∈ PXY , where PXY
defined in (4). Denote by T the transition probability matrix
from Y to X. Assume that function RCEB

T (η) defined by

RCEB
T (η) ≜ min

PZ|Y : H(Y|Z)≥η
H(X|Z), (7)
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is a strictly convex function of η, then it is equivalent to the
following problem:

gT (η) ≜ min
p∈∆n : hn(p)≥η

hn(Tp), (8)

where ∆n is the n-dimensional simplex, and the optimal
channel from Y to Z is also a modulo additive channel.
Thus, if the strict convexity holds then modulo additive
channels will form a saddle point in (6) and thus optimal via
Lemma 1 (assuming that PXY is modulo additive).

Remark 1: Proposition 1 establishes equivalence between
the problems addressed in [41] and [7]. But, as was shown in
[41], the function gT (η) is not convex in general, therefore we
cannot universally utilize Proposition 1, but only for regions
of η where it is convex.

We will next show that in the low-SNR regime, specifically,
when η1 ≥ log(n− 1), the optimal distribution achieving (6)
has a unique structure, characterized by Hamming channels.
We first give a proper definition of the generalized Hamming
channel. A pmf p ∈ ∆n is called (α, n)-Hamming [41], if for
some α ∈ [0, 1], x̄ ≜ 1−x, it is of the form

p = α · en + ᾱ · un =
(
α+

ᾱ

n
,
ᾱ

n
, . . .

ᾱ

n

)
, (9)

where en = (1, 0, . . .) is an extreme point of ∆n. For negative
values of α, the vector on the RHS of (9) is a pmf only if
α ∈ [− 1

n−1 , 0). In that case it has a full support, and the first
probability is the smallest and all the other n−1 probabilities
are the largest and equal to each other. Note also that p = un

for α = 0 and then H(p) = log n, while p = (0,uT
n−1)

T for
α = − 1

n−1 and then H(p) = log(n− 1). We thus generalize
the Hamming pmf for all α ∈ [−1, 0] as follows. A pmf p is
(α, n, k) negative-Hamming if

p = [α · ek + ᾱuk,0n−k], (10)

where k ∈ [n − 1] is such that α ∈ (− 1
k−1 , 0] and k = n

otherwise.
Theorem 3: Consider the optimization problem defined in

(6), and assume that η1 ≥ log(n − 1), then, the optimal PV

and PW are a regular Hamming channel with parameter α
and a negative Hamming channel with parameters (β, n, n),
respectively, where α ∈ [0, 1] is the positive root of

η2 +
(
α+

ᾱ

n

)
log

(
α+

ᾱ

n

)
+

(n− 1)ᾱ

n
log

ᾱ

n
= 0, (11)

and β ∈ [−1/(n− 1), 0] is the negative root of

η1 +

(
β +

β̄

n

)
log

(
β +

β̄

n

)
+

(n− 1)β̄

n
log

β̄

n
= 0. (12)

Furthermore,

Rmod(η1, η2)=−
(
αβ+

αβ

n

)
log

(
αβ+

αβ

n

)
−(n−1)αβ

n
log

αβ

n
.

Remark 2: This elegant result does not extends to the regime
η1 ∈ (0, log(n−1)), as the following counterexample demon-
strates. Suppose PW = p is a negative Hamming channel with
parameters (0.46, 3, 2), and take η2 = 0.7. In this case the pos-
itive Hamming point is given by q+ = (0.866, 0.067, 0.067)T

which achieves an output entropy of h(p ∗ q+) = 1.179

(bits). However, taking q∗ = (0.857, 0.031, 0.112)T gives us
h(p ∗ q∗) = 1.165 < h(p ∗ q+) (bits).

We next provide bounds on (6) which complement the result
of Theorem 3.

Theorem 4: Let α be the positive root of (11), β be the
parameter of the negative Hamming pmf (10) with entropy
η1, and ζ be the positive root of (12). If η1 ∈ (0, log(n−1)),
then

Rmod(η1, η2) ≤ −
(
αβ +

αβ̄

k
+

ᾱ

n

)
log

(
αβ +

αβ̄

k
+

ᾱ

n

)
−(k−1)

(
αβ̄

k
+

ᾱ

n

)
log

(
αβ̄

k
+

ᾱ

n

)
−(n−k)

( ᾱ
n

)
log

( ᾱ
n

)
.

If n = 3, then

Rmod(η1, η2) ≥ (1+β)hb

(
1−α
3

)
+(1+β)

(
1−1−α

3

)
−βη2.

If n > 3, then

Rmod(η1, η2) ≥ −
(
αζ+

αζ

n

)
log

[
αζ+

αζ

n

]
− (n−1)αζ

n
log

αζ

n
.

Finally, we consider the high-SNR regime, namely the
scenario where η1 is small. In such case we have the following
characterization of the optimal distributions and rate.

Theorem 5: Suppose η2 > log(n− 1), then

R(η1, η2)− η2 = αβ log

(
1 +

αn

1− α

)
· (1 + o(1)), (13)

with α and β being the positive roots of (11), and (12), and
o(1) vanishes when η1 ↓ 0. Optimal PW and PV are both
positive Hamming distributions satisfying the constraint with
equality.

IV. MODULO ADDITIVE CHANNELS WITH TV
CONSTRAINT

Let δ ∈ (0, 2) be given, and a nominal channel modulo
additive channel represented by P

(0)
W . In this section, the

constraint H(W) ≤ η1 in PXY from the previous section is
replaced with the constraint dTV(PW,P

(0)
W ) ≤ δ (the set QZ|Y

remains the same). We denote the resulting compound IB value
as RTV(δ, η2).

A natural approach is to relate RTV(δ, η2) to the standard
bottleneck problem R(0, η2) ≡ RCEB

T (η2) via the continuity
of entropy in the total variation metric. This idea was
used, e.g., in [42], to establish generalization bounds for
the bottleneck problem, that is, in the regime of vanishing
δ. Here, we present a slightly tighter result, valid for any
δ ∈ (0, 1). To this end, recall that the entropy difference of
two pmfs in ∆n of total variation δ is bounded by [43], [44]
ω(δ, n) ≜ 1

2δ log(n− 1) + hb

(
δ
2

)
.

Proposition 2: For any δ ∈ (0, 1)∣∣RTV(δ, η2)−RCEB
T (η2))

∣∣ ≤ ω(δ, n) (14)

where RCEB
T (η2) is computed at P(0)

W .
Proposition 2 relates the compound IB to the standard IB

problem, however, the latter is, in general, difficult to compute
(and requires, for example, alternating minimization algorithm
as in Section V). In what follows, we will state computable
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upper and lower bounds to RTV(δ, η2). To this end, let T
be a channel transition matrix, and let θ(T ) ∈ [0, 1] be the
Dobrushin contraction coefficient of T [45]

θ(T ) ≜ max
p,q∈∆n : p̸=q

dTV(Tp, Tq)

dTV(p,q)

=
1

2
max

i,i′∈[n] : i̸=i′
dTV(Ti, Ti′), (15)

where Ti is the ith row of T (the second inequality
is a ”two-point characterization”). Thus, at worst case,
θ(T ) is computable by merely n2 − n total variation
distance calculations. Furthermore, if T ∈ [0, 1]n×n

is obtained by n permutations of a pmf, then only
n − 1 total variation distance calculations are required.
Second, let Γ(δ) ≜ minq∈∆n : dTV(q,un)≤δ H(q) be the
minimal entropy over a total variation ball centered
at un. This problem has a closed-form solution [46,
Thm. 3] as follows: If 1 − 1/n ≤ δ/2 then the optimal
solution is q = (1, 0, . . . , 0) and Γ(δ) = 0. Otherwise, let
n0(δ) ≜ ⌊n + 1 − nδ/2⌋. Then the optimal solution is q∗ =
(1/n+ δ/2, 1/n . . . , 1/n, (n− n0(δ) + 1)/n− δ/2, 0, . . . , 0)
(there are n0 − 2 terms of 1/n so the support size of this
solution is n0). Therefore, for δ ∈ [0, 2 − 2/n] the function
Γ(δ) is strictly positive and strictly decreasing with extreme
values of Γ(0) = log n and Γ(2 − 2/n) = 0. So, there
exists an inverse function to Γ(δ), which we denote by
D(η) : [0, log n] → [0, 2 − 2/n]. Third, for a given
p(0) ∈ ∆n, let Φ(δ;p(0)) ≜ maxq∈∆n : dTV(q,p(0))≤δ H(q)
be the maximal entropy over a total variation ball
centered at un. This problem also has a closed-form
solution [46, Thm. 2] as follows: Let µ and ν be such
that

∑n
i=1(p

(0)
i − µ)+ =

∑n
i=1(ν − p

(0)
i )+ = δ/2. If

ν ≥ µ then Φ(δ;p(0)) = log n and the maximizing
distribution q∗ = un is uniform. Otherwise, q∗ is such that
q∗
i = min{max(p

(0)
i , µ), ν}, and its entropy is the maximum.

Theorem 6: Let T (PW) be the channel transition matrix
which corresponds to n cyclic permutations of PW. Then,

RTV(δ, η2) ≥ max
PW : dTV(PW,P

(0)
W )≤δ

Γ (θ(T (PW)) ·D(η)) , (16)

and that

RTV(δ, η2) ≤ min
PV : H(PV)=η2

Φ
(
θ(T (PV)) · δ;T (PV)p

(0)
)
.

(17)
Since Γ(δ), its inverse D(η), as well as Φ(δ;p(0)) are all com-
putable, the expressions in the lower bound can be computed
for any given T (PW). In general, the optimization over PW

in the lower bound is computationally difficult. However, any
arbitrary choice of PW which satisfies the constraint leads to
a valid lower bound. Analogous statements hold for PV in the
upper bound. It should be noted that the optimization of the
lower bound requires finding the minimal θ(T (PW)), whereas
PV in the upper bound affects both the contraction coefficient
θ(T (PV)) and the transformed nominal pmf T (PV)p

(0).
Note that as gT (η) ≥ η always holds [41, Lemma 5 (c)],

and so the lower bound of Thm. 6 requires optimizing over
PW for which θ(T (PW)) < 1. In general θ(T ) < 1 only if no
two rows of T are orthogonal. Here, since the rows of T (PW)
are circular permutations of PW, it holds that θ(T ) < 1 if and
only if the support of PW is strictly larger than n/2.

Algorithm 1: pf iterator(args)
Input: PX, PY, PZ|Y and β1

Initialize: Arbitrary P
(0)
XY with valid marginals, t = 1.

while Variation in I(X;Z) is greater then ϵ do

Compute P
(t)
Z|X(z|x) =

∑
y∈Y PZ|Y(z|y)P

(t−1)
XY (x,y)

PX(x)
;

Set P(t)
XY(x, y) =

PX(x)PY(y)e
−β1D(PZ|Y(·|y)||P(t)

Z|X(·|x))
Z1(x,y,β1)

;

Find Z1(x, y, β1) s.t. P(t)
XY has valid marginals;

t = t+ 1;
end
Output: P∗

XY

Remark 3: The proof of Thm. 6 provides a lower bound on
gT (η) Witsenhausen’s function from [41], which may be of
independent interest.

V. ALTERNATING OPTIMIZATION ALGORITHM

We return in this section to the general (C1, C2) PF com-
pound set. Applying a two-phase Lagrangian methodology, we
obtain a set of self consistent equations for PXY and PZ|Y. We
then propose a Blahuto-Arimoto type iterative algorithm that
solves those equations.

A. The Inner Lagrangian
Fix PZ|Y that satisfies I(Y;Z) ≤ C2 and consider the inner

minimization problem from (1), given by

f(PZ|Y, C1) = min
PXY:I(X;Y)≥C1

I(X;Z). (18)

For λ1 ≥ 0, the respective Lagrangian of (18) is given by,

Lmin(PXY, λ1,µ,ν) = I(X;Z) + λ1 (C1 − I(X;Y))

+
∑
x∈X

µx

∑
y∈Y

PXY(x, y) +
∑
y∈Y

νy
∑
x∈X

PXY(x, y). (19)

Proposition 3: Any stationary point P∗
XY of (19) satisfies

P∗
XY(x, y) =

PX(x)PY(y)e
−β1D(PZ|Y(·|y)||PZ|X(·|x))

Z(x, y, β1)
, (20)

where β1 ≜ 1/λ1 and Z(x, y, β1) is the normalization con-
stant. Furthermore, the optimal PZ|X(z|x) is given by

PZ|X(z|x) =
1

PX(x)

∑
y∈Y

PZ|Y(z|y)P∗
XY(x, y). (21)

The system of equations characterizing the stationary points
in (20) and (21) must hold simultaneously for consistency. An
alternating iteration algorithm is a common approach to solve
these equations.

Proposition 4: Equations (20) and (21) are satisfied simul-
taneously at the minimum of the Lagrangian (19) where the
minimization is performed independently over the convex sets
of {PXY(x, y)} and {PZ|X(z|x)},

min
PZ|X(z|x)

min
PXY(x,y)

Lmin(PXY, λ1, µ, ν). (22)

These independent conditions correspond precisely to alternat-
ing interactions of (20) and (21). Denoting by t the iteration
step, we obtain Algorithm 1.
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B. The Outer Lagrangian
Note that maximization of I(X;Z) for a fixed PXY that

satisfies I(X;Y) ≥ C1 is just the standard information bot-
tleneck, the proposed here technique is identical to the one
suggested in [1]. The respective algorithm from [1, Theorem
5] is summarized in Algorithm 2.

Algorithm 2: ib iterator(args)
Input: PXY, and β2

Initialize: Arbitrary P
(0)
Z|Y, s = 1.

while Variation in I(X;Z) is greater then ϵ do

P
(s)
Z|Y(z|y) =

P
(s−1)
Z (z)

Z(y,β2)
· e−β2D

(
PX|Y(·|y)||P

(s−1)

X|Z (·|z)
)

;

P
(s)
Z (z) =

∑
y∈Y PY(y)P

(s−1)
Z|Y (z|y);

P
(s)
X|Z(x|z) =

∑
y∈Y PX|Y(x|y)P

(s)
Y|Z(y|z);

s = s+ 1 ;
end
Output: P∗

Z|Y

C. The Compound Algorithm
To this end, two algorithms were proposed that aim to solve

(1) in a isolated manner. In this section we propose a method
that intervenes them together with an objective to find the
solution simultaneously. There are two natural approaches to
handle this problem. The first one is to alternate between the
steps of each algorithm until convergence. The second one is
to run the first algorithm until convergence and then the other
one, and so on. We have found the second type of algorithms
to be more effective, and this is summarized in Algorithm 3.
We have no global convergence guarantees here as the standard
IB does not have such [1].

Algorithm 3: COMIB Programming
Input: PX, PY, C1 and C2

Initialize: P(0)
Z|Y.

while Variation in I(X;Z) is greater then ϵ do
for β1 ∈ R+ do

P∗
XY(β

∗
1) = pf iterator(PX,PY,P

(0)
Z|Y, β1);

end
Find P∗

XY(β
∗
1) s.t. I(X;Y) = C1 ;

for β2 ∈ R+ do
P∗
Z|Y(β2) = ib iterator(P∗

XY(β
∗
1), β2);

end
Find β∗

2 s.t. I(P∗
Z|Y(β

∗
2)) = C2. P∗

Z|Y(β
∗
2) 7→ P

(0)
Z|Y .

end
Output: P ∗

XY,P ∗
Z|Y

VI. NUMERICAL SIMULATIONS

We evaluate both the analytical bounds derived in Thm. 4
and the algorithm developed in Section V by comparing their
results on a common example. A representative example of
n = 5 and various rate constraints is shown in Figure 1. As
expected, the algorithm’s output lies in the medium between
the upper and lower bounds. It is also somewhat closer to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

η2

R

Upper Bound η1=1.61
Lower Bound η1=1.61
Algorithm η1=1.61
Upper Bound η1=1.18
Lower Bound η1=1.18
Algorithm η1=1.18

Fig. 1. Bounds on Rmod(η1, η2) function for n = 5 and η1 = {1.61, 1.18}.

the lower bound, which hints that the upper bounds might be
improved.

We also evaluate the bounds derived for the TV class
setting in Section IV. An example for n = 15, and δ = 0.3,
and P

(0)
W ∝ exp(2i) for i ∈ [15] (and 0 otherwise) is illustrated

in Figure 2. The bounds are fairly close and tighten for large
values of η2.

VII. CONCLUDING REMARKS

We have defined the COMIB programming problem. We
obtained various characterizations for the binary setting,
the Gaussian settings, and derived upper and lower bounds
for modulo additive channels with PF constraints, and
with TV constraints. Under some qualifying conditions,
Gaussian distributions and Hamming channels were shown
to be extermal. Finally, we have proposed an alternating
iteration algorithm that finds a locally optimal solution.
Future research calls for further tightening these bounds, and
establishing additional settings in which the optimal channels
and representations can be analytically characterized.
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