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Abstract—A broadcast/multicast communication system is
studied in which layered division multiplexing (LDM) is applied
to support differential quality-of-service (QoS) levels. Focusing
on a practical scenario in which the transmitter does not know
the fading distribution, layer allocation is optimized based on a
dataset sampled during deployment. The optimality gap caused
by the availability of limited data is bounded via a generalization
analysis, and is shown to be monotonically decreasing as the
dataset grows larger. Numerical experiments demonstrate that
LDM improves spectral efficiency even for small datasets; and
that, for sufficiently large datasets, the proposed mirror-descent-
based layer optimization scheme achieves an expected rate
close to that achieved when the transmitter knows the fading
distribution.

I. INTRODUCTION

Layered division multiplexing (LDM) has been introduced
in several standards as an effective means to support differential
quality-of-service (QoS) in broadcast and multicast services.
With LDM, multiple independent sub-messages, or layers, are
superimposed, enabling the decoding of a different number of
messages depending on the channel conditions, thus supporting
communication at a variable rate [1]–[4]. The most common
use of LDM is for multimedia broadcast, as adopted by the
Advanced Television Systems Committee (ATSC 3.0) [4], [5],
in which LDM supports a robust configuration for mobile
receivers and a high-capacity connection for fixed receivers.
Other applications include Machine-Type Communication
(MTC) and Industry 4.0, in which LDM is considered as a tool
to deliver critical control services and best-effort monitoring
services [6]–[8]. Maximizing the expected achievable rate,
or average rate across all receivers, requires adjusting the
layers’ rates and power levels as a function of the channel
distribution [9]. However, in practice, this distribution is
unknown. Accordingly, in this paper, we assume the transmitter
has access to a dataset sampled during deployment, from which
the rate and power allocation for each layer are optimized.
We explore theoretic and algorithmic aspects of this design
problem.

Related Work: LDM, also known as the broadcast approach,
has been extensively studied as means to improve spectral
efficiency in various scenarios. A comprehensive survey of the
state-of-the-art is available in [1], and we mention here some
representative examples. The broadcast approach for slowly
fading single-user channels was investigated in [9], where it

This work has been supported by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 Research and Innovation Programme
(Grant Agreement Nos. 694630 and 725731).

was shown that transmitting multiple layers can increase the
expected achievable rate, and the optimal power allocation
density was derived for an infinite number of layers. The
gain of the broadcast approach was also demonstrated in
[10] for finite number of layers. Specifically, for quasi-static
Rayleigh fading channel, two layers were shown to achieve
most of the throughput gain. Importantly, unlike our work, both
references [9] and [10] assume that the transmitter knows the
fading distribution. In [2], for broadcasting fixed and mobile
services, LDM with two layers was shown to outperform
time division multiplexing (TDM) and frequency division
multiplexing (FDM) in terms of the mobile service’s capacity-
coverage trade-off. Multicast beamforming was studied in
[11] with the goal of minimizing the outage probability
for unknown fading distribution, and several gradient-based
algorithms were proposed to optimize beamforming based
on a dataset of channel samples. Similarly, an alternating
gradient descent algorithm was recently proposed in [12]
for the joint optimization of the precoding weights and the
reconfigurable intelligent surface (RIS) reflection pattern in
RIS-aided communication system.

Main Contributions: In this paper, we study the LDM-
based broadcasting/multicasting system illustrated in Fig. 1,
in which a single-antenna base station (BS) serves single-
antenna clients. The channel coefficients and the the fading
distribution are assumed to be unknown to the BS. In order to
maximize the expected achievable rate, the BS optimizes layer
allocation based on a dataset sampled during deployment. At
a theoretical level, we bound the optimality gap caused by
the availability of limited data via a generalization analysis
[13], and characterize the number of samples required to
maintain a desired optimality gap. At an algorithmic level, we
introduce a mirror-descent based scheme [14] to maximize
an empirical estimate of the expected rate. Numerical results
demonstrate that broadcasting multiple layers improves spectral
efficiency even for small datasets, and that, for sufficiently
large datasets, the expected rate is close to that achieved when
the BS knows the fading distribution, confirming the sample
complexity analysis.

Notation: Random variables and vectors are denoted by
lowercase and boldface lowercase Roman-font letters, re-
spectively. Realizations of random variables and vectors
are denoted by lowercase and boldface lowercase italic-font
letters, respectively. For example, x is a realization of random
variable x and x is a realization of random vector x. For any
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Fig. 1. Illustration of the broadcast setting under study. A single-antenna
base station (BS) broadcasts a common message to single-antenna clients.
The signal to each client undergoes a fading channel in which the fading
coefficient is drawn from a common fading distribution ph(h).

positive integer K , we define the set [K] , {1,2, . . . ,K}. The
cardinality and convex hull of a set L are denoted by |L| and
conv(L), respectively. The `1-norm and `2-norm of a vector
s are denoted by ‖ s‖1 and ‖ s‖2, respectively. For two scalars
a and b, the indicator of the event a ≥ b is denoted by 1a≥b .
That is, 1a≥b equals one if a ≥ b and zero otherwise. The
set of non-negative real numbers is denoted by �+. diag(u)
represents a diagonal matrix with diagonal given by the vector
u.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider the system depicted in Fig. 1 in which a single-
antenna BS broadcasts a common message to single-antenna
clients over a fading broadcast channel. The fading coefficient
for each client is drawn from a common fading distribution
ph(h), and is assumed to remain constant for the duration of
a coding block consisting of n symbols. The common fading
distribution ph(h) may take the form of a mixture model, as in
[15], in order to account for heterogeneous long-term effects
such as path loss and shadowing.

The signal received by a client at time t ∈ [n], denoted by
y(t), can be expressed as

y(t) =
√

Phx(t) + z(t), (1)

where P > 0 denotes the BS transmission power; x(t) ∈ �
denotes the signal transmitted at time t, which is subject to
the average power constraint

�
[
|x(t)|2

]
≤ 1; (2)

channel coefficient h ∼ ph(h) denotes the quasi-static fading
coefficient; and z(t) ∼ CN(0,1) denotes the additive white
Gaussian noise (AWGN).

We assume that the BS does not know the fading realizations
nor the common fading distribution ph(h), while each client
knows its own channel h. Due to the lack of channel state
information (CSI), the BS applies layered division multiplexing
(LDM) [9] with M layers, or sub-messages, in order to enable
differential quality of service at the clients. The transmitted
signal x(t) in (1) is accordingly given as

x(t) =
M∑
m=1

xm(t), (3)

where xm(t) ∼ CN(0, λm), with m ∈ [M], denotes a symbol
from a Gaussian random codebook with average power λm
that is used to encode sub-message wm ∈ [2nρm ] of rate
ρm ≥ 0. To satisfy the normalized power constraint in (2), the

power-allocation vector λλλ , (λ1, . . . , λM ) must thus lie in the
simplex

∆
M
c ,

{
λλλ ∈ �M

+ :
M∑
m=1

λm ≤ 1

}
. (4)

We refer to message wm and corresponding encoded signal
xm(t) as the mth layer.

Each client decodes sub-messages by applying successive
cancellation decoding (SCD) with the order w1, . . . ,wM . When
decoding layer m ∈ [M], all subsequent layers are treated
as AWGN. Each client can hence decode only a subset of
layers depending on its channel gain g , |h|2. We denote by
Im ,

∑M
i=m+1 λi the normalized power level of the inter-layer

interference affecting the decoding of layer m, and as pg(g)
the distribution of the channel gain g.

We parametrize the rate ρm of layer m as [9]

ρm(s
m,λλλ) , log2

(
1 +

‖ sm‖1λmP
1 + ‖ sm‖1ImP

)
, (5)

where s , (s1, . . . , sM ) ∈ �M
+ is a non-negative vector set by

the BS, and vector sm , (s1, . . . , sm) ∈ �m
+ consists of the

first m elements of s. Assuming that all previous layers are
correctly decoded, the rate achievable for layer m by a client
with channel gain g is log2(1 + gλmP/(1 + gImP)). Therefore,
the client can decode all layers up to layer m if and only if its
channel gain satisfies the inequality g ≥ ‖ sm‖1. Accordingly,
given the power and rate allocation vectors λλλ and s, the total
rate that can be decoded by a client with channel gain g is
given as

R(s,λλλ,g) ,
M∑
m=1

ρm(s
m,λλλ)1g≥‖sm ‖1 . (6)

We study the maximization of the expected achievable rate

R̄(s,λλλ) , �g [R(s,λλλ,g)] , (7)

where the expectation is over the fading distribution pg(g),
with respect to the power and rate allocation vectors λλλ and s.
That is, we consider the optimization problem

(s∗,λλλ∗) ∈ arg max
(s,λλλ)∈�M

+ ×∆
M
c

R̄(s,λλλ). (8)

III. EMPIRICAL AVERAGE RATE MAXIMIZATION

In this paper, we assume that the BS does not know the
fading distribution pg(g), and hence it cannot directly optimize
the expected achievable rate R̄(s,λλλ). Instead, we assume that
the BS has access to a dataset

G = {g1, . . . ,gN } (9)

consisting of N fading realizations sampled in an independent
and identically distributed (i.i.d.) manner from distribution
pg(g). Based on dataset G, which is collected offline, e.g., dur-
ing deployment, the BS approximates the expected achievable
rate with the empirical average

R̄G(s,λλλ) =
1
N

N∑
i=1

R(s,λλλ,gi). (10)
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The maximization of the average rate (10) over power and rate
allocation vectors λλλ and s can be expressed as the optimization
problem

(sG,λλλG) ∈ arg max
(s,λλλ)∈�M

+ ×∆
M
c

R̄G(s,λλλ). (11)

A solution to problem (11) can be practically obtained via an
iterative optimization scheme as detailed in Section IV.

We emphasize that optimizing the average rate R̄G(s,λλλ) via
problem (11) is useful not only when the fading distribution
pg(g) is unknown, but also when the direct optimizations in (8)
based on knowledge of the distribution pg(g) is not tractable.
In this latter case, one can potentially generate the dataset G
with an arbitrary number of fading realizations N .

A. Optimality Gap and Sample Complexity

An important theoretical question is whether the expected
achievable rate obtained under the power and rate allocation
vectors (11) approaches the ground-truth maximum expected
achievable rate obtained with vectors (8) as the size of the
dataset increases. If so, it would also be interesting to quantify
how many samples N are required to achieve a desired level
of approximation. This is the subject of this subsection.

To proceed, we define the optimality gap

eG , R̄
(
s∗,λλλ∗

)
− R̄

(
sG,λλλG

)
(12)

as the difference between the expected rate achieved with
optimal power and rate allocation vectors (8) and the expected
rate achieved by the empirical rate maximization (11). The
optimality gap is random due to the stochastic nature of the
dataset G.

To bound the optimality gap, we assume that the norms of
the optimal vectors s∗ and sG in (8) and (11), respectively,
can be bounded as max{‖ s∗‖1, ‖ sG‖1} ≤ S for some known
constant S > 0. Note that this assumption is not restrictive
since, in practice, S represents the largest fading gain g that
a client is expected to experience. The following proposition
bounds the optimality gap under this assumption.

Proposition 1: Let G = {g1, . . . ,gN } be a dataset of
N fading realizations drawn independently from the fading
distribution pg(g), and let δ ∈ (0,1]. With probability at least
1 − δ, the optimality gap (12) is bounded, for rate allocation
vectors with bounded norms max{‖ s∗‖1, ‖ sG‖1} ≤ S, as

eG ≤

(
4

√
(2N + 1) ln(N + 1)

3N(N + 1)
+

√
2 ln(2/δ)

N

)
2 log2 (1 + SP) .

(13)

Proof: See Appendix A.
This result shows that the optimality gap scales with number

of data points, N , as O(
√

ln(N)/N), implying that any level
of accuracy can be attained as the dataset grows larger, i.e.,
as N →∞. Furthermore, for a given desired optimality gap
eG ≤ ε , the required number of data points N , i.e., the sample
complexity, satisfies the approximate inequality

N
ln(N)

'

(
log2(SP)

ε

)2
(14)

for large N . Intuitively, the sample complexity increases
with the signal-to-noise ratio (SNR) metric SP since, as the

achievable rate increases, a better approximation is required
to achieve the same subtractive optimality gap.

IV. MIRROR GRADIENT DESCENT

In this section, we introduce a gradient-based iterative
optimization procedure to tackle the empirical average rate
maximization problem (11). The approach is based on the
introduction of a surrogate smooth objective and on mirror
descent, as described in the rest of this section and summarized
in Algorithm 1.

Algorithm 1: Empirical average rate maximization
Input : Dataset G
Initialization: Initialize u ∈ �M and λλλ ∈ ∆M

c

1 set i = 0
2 set u(i) = u and λλλ(i) = λλλ
3 while not converged do
4 set i ← i + 1
5 set u(i) ← GD(u(i−1);G,λλλ(i−1)) (defined in (19))
6 set λλλ(i) ← EG(λλλ(i−1);G, u(i−1)) (defined in (20))

7 return
(
s(i) = exp(u(i)),λλλ(i)

)
A. Smooth Surrogate Objective

A first challenge in developing iterative solutions to problem
(11), is that the partial derivative of the indicator in the
achievable rate expression (6) with respect to vector s equals
zero almost everywhere. Therefore, in order to facilitate the
application of a gradient-based optimization procedure, we
replace the rate R(s,λλλ,g) in (6) with the smooth surrogate
objective

Rσ(s,λλλ,g) ,
M∑
m=1

ρm(s
m,λλλ)σ(c(g − ‖ sm‖1)), (15)

where σ(x) , 1/(1+exp(−x)) is the sigmoid function, and the
parameter c > 0 determines the trade-off between smoothness
and accuracy of the surrogate approximation. As c→∞, the
surrogate (15) tends uniformly to the original rate (6), while
smaller values of c yield non-zero partial derivatives with
respect to s.

Using the approximation (15), we define the surrogate
empirical average rate maximization problem as(

s̃G, λ̃λλ
G)
= arg max
(s,λλλ)∈�M

+ ×∆
M
c

R̃G(s,λλλ), (16)

where R̃G(s,λλλ) denotes the surrogate average rate

R̃G(s,λλλ) ,
1
N

N∑
i=1

Rσ(s,λλλ,gi). (17)

B. Mirror Descent

Although the objective in (16) is smooth, plain-vanilla
gradient descent cannot be applied to address the optimization
(16) due to the domain constraints on the optimization variables
(s,λλλ) ∈ �M

+ × ∆
M
c . To tackle the constraint s ∈ �M

+ , we
parametrize the rate-allocation vector s with a vector u ∈ �M

as

s = exp(u) , (exp(u1), . . . ,exp(uM )). (18)

2022 IEEE International Symposium on Information Theory (ISIT)

2698Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 22,2022 at 10:09:39 UTC from IEEE Xplore.  Restrictions apply. 



Furthermore, to satisfy the constraint λλλ ∈ ∆M
c , we consider a

mirror-descent based scheme which adapts the updates to the
geometry of the simplex ∆M

c via the exponentiated gradient
[16]. Overall, this leads to the updates

u ← u + η diag(exp(u)) ∇s R̃G(s,λλλ)
���
s=exp(u)

, GD(u;G,λλλ)

(19)

and

λm ←
λm exp

(
γ[∇λλλ R̃G(exp(u),λλλ)]m

)∑M
m′=1 λm′ exp

(
γ[∇λλλ R̃G(exp(u),λλλ)]m′

)
, EG(λλλ;G, u), ∀m ∈ [M]. (20)

The resulting procedure to optimize the empirical average rate
is summarized in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we evaluate the expected rate R̄
(
s̃G, λ̃λλ

G)
for

parameters ( s̃G, λ̃λλG) obtained via Algorithm 1 with learning
rates η = γ = 0.01 and sigmoid smoothness parameter c = 10.
The expected rate is averaged over 1000 datasets G, which we
denote as �G

[
R̄
(
s̃G, λ̃λλ

G) ]
.

In Fig. 2, we plot the expected achievable rate as a function
of the number of layers M with power P = 20dB, Rayleigh
fading distribution, and dataset of size N = 10, 100, and 1000.
For this special case, the ideal optimal solution obtained by
using infinite layers and assuming that the fading distribution
is known was derived in [9], and is used as an upper bound.
Furthermore, we plot for reference the expected rate achieved
with finite number of layers when the BS knows the fading
distribution, which is obtained by replacing the surrogate
empirical average rate R̃G(s,λλλ) with the expected rate R̄(s,λλλ)
in the gradient-based updates (19)–(20). First, confirming the
sample complexity analysis in Section III-A, for sufficiently
large datasets, the expected rate is close to that achieved when
the BS knows the fading distribution. Furthermore, using
multiple layers provides notable gain over a single layer, even
for small datasets. Finally, the expected rate achieved with
M = 6 layers and sufficiently large dataset is seen to be close
to the upper bound.

In Fig. 3, we plot the ratio of the expected rate achieved
via LDM with M layers to the expected rate achieved with
a single layer as a function of the power P with Rayleigh
fading distribution and dataset of size 1000. It is observed
that the gain of LDM increases with power P. Intuitively, this
is because, for sufficiently high power, splitting the last layer,
while keeping the same norm ‖ s‖1, has a negligible impact
on the rate ρM (s,λλλ) but adds another layer that is much more
likely to be decoded (see eqs. (5)–(7)).

VI. CONCLUSION

In this work, we have studied LDM as an enabler of
differential QoS for broadcast/multicast communication sys-
tems. We have focused on a practical model in which the
fading distribution is unknown, and the transmitter optimizes
rate and power allocation for each layer based on a dataset
sampled during deployment. The optimality gap caused by the
availability of limited data was bounded via a generalization
analysis ans was shown to monotonically decrease as the
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Fig. 2. The expected achievable rate as a function of M with P = 20dB and
N = 10, 100, and 1000.
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dataset grows larger. To optimize the rate and power allocation
parameters, a mirror-descent based scheme was introduced,
which, for sufficiently large datasets, was demonstrated via
numerical experiments to achieve an expected rate close to
that achieved when the BS knows the fading distribution.
Among related problems left open by this study, we mention
the extension to multiple transmit antennas [11] and to
channels with multiple uncoordinated transmitters [17], [18].
An extended version of this work, which introduces the
conditional value-at-risk (CVaR) rate performance measure
for ultra-reliable communication, and considers meta-learning
as a means to reduce sample complexity by leveraging data
from previous deployments, is available in [19].

APPENDIX

A. Proof of Proposition 1

The optimality gap eG (12) can be upper bounded as

eG = R̄(s∗,λλλ∗) − R̄G(s∗,λλλ∗) + R̄G(s∗,λλλ∗) − R̄G(sG,λλλG)

+R̄G(sG,λλλG) − R̄(sG,λλλG)

≤

(
R̄(s∗,λλλ∗) − R̄G(s∗,λλλ∗)

)
+

(
R̄G(sG,λλλG) − R̄(sG,λλλG)

)
,
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(21)

where the inequality holds since (sG,λλλG) maximize the average
rate R̄G(s,λλλ). Next, to further bound the optimality gap, we
bound, uniformly, the difference |R̄(s,λλλ) − R̄G(s,λλλ)| for all
λλλ ∈ ∆M

c and s ∈ �M
+ with ‖ s‖1 ≤ S. Note that the expected

achievable rate (7) can be expressed as

R̄(s,λλλ) = �g [R(s,λλλ,g)] =
M∑
m=1

ρm(s
m,λλλ)F̄g(‖ s

m‖1), (22)

where F̄g(‖ s
m‖1) denotes the complementary cumulative

distribution function (CCDF)

F̄g(‖ s
m‖1) , Pr [g ≥ ‖ sm‖1] . (23)

Similarly, the average rate (10) can be expressed as

R̄G(s,λλλ) =
M∑
m=1

ρm(s
m,λλλ)F̄G

g (‖ s
m‖1), (24)

where F̄G
g (‖ s

m‖1) denotes the empirical CCDF

F̄G
g (‖ s

m‖1) ,
1
N

N∑
i=1

1gi ≥‖sm ‖1 . (25)

Therefore, to uniformly bound the difference |R̄(s,λλλ) −
R̄G(s,λλλ)|, we first uniformly bound |F̄g(s) − F̄G

g (s)| using the
following proposition.

Proposition 2: Let G = {g1, . . . ,gN } be a dataset of
N fading realizations drawn independently from the fading
distribution pg(g), and let δ ∈ (0,1]. With probability at least
1 − δ, uniformly over all s ∈ �+, we have���F̄g(s) − F̄G

g (s)
��� ≤ 4

√
(2N + 1) ln(N + 1)

3N(N + 1)
+

√
2 ln(2/δ)

N
.

(26)

Proof: See Appendix B.
Proposition 2 implies that, with probability at least 1 − δ,

we can bound the difference |R̄(s,λλλ) − R̄G(s,λλλ)|, uniformly
over all λλλ ∈ ∆M

c and s ∈ �M
+ with ‖ s‖1 ≤ S, as���R̄(s,λλλ) − R̄G(s,λλλ)

��� (27)

(a)
=

����� M∑
m=1

ρm(s
m,λλλ)

[
F̄g(‖ s

m‖1) − F̄G
g (‖ s

m‖1)
] �����

(b)
≤

M∑
m=1

ρm(s
m,λλλ)

���F̄g(‖ s
m‖1) − F̄G

g (‖ s
m‖1)

���
(c)
≤

(
4

√
(2N + 1) ln(N + 1)

3N(N + 1)
+

√
2 ln(2/δ)

N

)
M∑
m=1

ρm(s
m,λλλ)

(d)
≤

(
4

√
(2N + 1) ln(N + 1)

3N(N + 1)
+

√
2 ln(2/δ)

N

)
log2(1 + SP),

where (a) follows from (22) and (24); (b) follows from from
the triangle inequality and since the rate of each layer is non-
negative; (c) follows from Proposition 2; and (d) holds since
S ≥ ‖ s‖1. Finally, based on inequalities (21) and (27), we can
upper bound the optimality gap as (13).

B. Proof of Proposition 2

Let function ` : �× � 7→ {0,1} be defined as

`(s,g) , 1g≥s . (28)

The true and empirical CCDF can hence be expressed as

F̄g(s) = �g [`(s,g)] (29)

and

F̄G
g (s) =

1
N

N∑
i=1

`(s,gi), (30)

respectively, where g1, . . . ,gN ∈ G are N fading realizations.
In addition, let L(g1, . . . ,gN ) ⊂ {0,1}N be the set

L(g1, . . . ,gN ) , {(`(s,g1), . . . , `(s,gN )) : s ∈ �}. (31)

Furthermore, denote by Rad(L(g1, . . . ,gN )) the Rademacher
complexity of set L(g1, . . . ,gN ), i.e.,

Rad(L(g1, . . . ,gN )) ,
1
N
�b

[
sup

`∈L(g1 ,...,gN )

N∑
i=1

bi`i

]
, (32)

where the elements of random vector b = (b1, . . . ,bN ) ∈

{±1}N are i.i.d. with Pr[bi = 1] = Pr[bi = −1] = 1/2. Since
|`(s,g)| ≤ 1 for all g ∈ �+ and s ∈ �, by [13, Thm 26.5] and
[20, Prop. 8], for random variables g1, . . . ,gN that are i.i.d.
according to pg(g), we have, with probability of at least 1− δ,
for all s ∈ �,���F̄g(s) − F̄G

g (s)
��� ≤ 4� [Rad(L(g1, . . . ,gN ))] +

√
2 ln(2/δ)

N
.

(33)

Next, we bound the expected Rademacher complexity
� [Rad(L(g1, . . . ,gN ))] in (33). We assume, without loss of
generality (w.l.o.g.), that the channel realizations g1, . . . ,gN ∈
G are ordered such that gi ≥ gj for all j ∈ [i]. Note that, if
`(s,gj) = 1 for some s ∈ � then `(s,gi) = 1 for all j ≤ i ≤ N .
Therefore, we have

|L(g1, . . . ,gN )| = N + 1. (34)

Denote by

¯̀ ,
1

N + 1

∑
`∈L(g1 ,...,gN )

` =
1

N + 1
(1,2, . . . ,N) (35)

the average vector in L(g1, . . . ,gN ). Note that

max
`∈L(g1 ,...,gN )

` − ¯̀
2 =

 ¯̀
2 =

√
N(2N + 1)
6(N + 1)

. (36)

Hence, by Massart Lemma [13, Lemma 26.8], we have

Rad(L(g1, . . . ,gN )) ≤

√
N(2N + 1)
6(N + 1)

·

√
2 ln(N + 1)

N

=

√
(2N + 1) ln(N + 1)

3N(N + 1)
(37)

for any channel realizations g1, . . . ,gN ∈ �+. This implies
that the upper bound in (37) bounds the expected Rademacher
complexity � [Rad(L(g1, . . . ,gN ))] as well. By substituting
(37) in (33) we get (26).
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