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Abstract—This paper considers the distributed information
bottleneck (D-IB) problem for a primitive Gaussian diamond
channel with two relays and Rayleigh fading. Due to the bot-
tleneck constraint, it is impossible for the relays to inform the
destination node of the perfect channel state information (CSI)
in each realization. To evaluate the bottleneck rate, we provide
an upper bound by assuming that the destination node knows
the CSI and the relays can cooperate with each other, and also
three achievable schemes with simple symbol-by-symbol relay
processing and compression. Numerical results show that the
lower bounds obtained by the proposed achievable schemes can
come close to the upper bound on a wide range of relevant system
parameters.

Index Terms—Distributed information bottleneck, primitive
Gaussian diamond channel, oblivious relay, Rayleigh fading.

I. INTRODUCTION

Introduced by Tishby in [1], the information bottleneck

(IB) paradigm, where relevant information about a signal

X is extracted from an observation Y and conveyed to a

destination via a rate-constrained bottleneck link, has found

remarkable applications in communication systems and neural

networks [2]–[5]. An interesting application of the IB problem

in communications consists of a source node, one or more

relays, and a destination node, which is connected to the

relays via error-free bottleneck links of given rate [6]–[18].

Two variants of this problem have been extensively studied.

In the information transmission setting, the source wishes to

transmit an information message to the destination. The source-

transmitted signal is a codeword, but the relays are “oblivious”,

i.e., unaware of the codebook but only of the marginal statis-

tics of the codeword symbols (see [8] for a rigorous model

based on codebook random selection). In the (remote) source

coding setting, the source produces a random signal with given

statistics, and the destination wishes to reproduce it within a

certain distortion (the so-called Chief Executive Officer (CEO)

problem). Interestingly, it turns out that when the distortion is

log-loss, the resulting CEO problem has the same achievable

tradeoff region (relevant information versus bottleneck rates)

of the information transmission problem with oblivious relays

(see [8] and [14]) although with different operational meaning.

This tradeoff region is shown to be optimal in [13] for the

log-loss CEO problem, and it is shown to yield the capacity

of the information transmission problem under an additional

condition independent of the relay observations condition in

[10].

In both cases, the source node sends signal sequences over

a communication channel and the relays compress and convey

their observations to the destination subject to the bottleneck

constraints. The “relevant information” is expressed by the

mutual information between the source signal and the messages

conveyed by the relays to the destination, and the goal is to

maximize such mutual information subject to the bottleneck

constraints.

A brief review of the works in [6]–[18] is provided here

in order to put our paper in context. References [6] and [7]

respectively considered Gaussian scalar and vector channels

with one relay, and provided the optimal trade-off between

the bottleneck and compression rate. In [8]–[15], Tishby’s

centralized IB method was generalized to the setting with

multiple distributed relays and the achievable regions or upper

bounds on the capacity were analyzed. But all references [6]–

[15] assumed that the perfect channel state information (CSI)

was known at both the relays and the destination node, which is

reasonable for block-fading channels, but will be impractical,

due to the bottleneck constraint, when channels vary quickly.

Reference [16] investigated the IB problem of a scalar Rayleigh

fading channel with one relay, where the CSI is only known at

the relay. An upper bound and two achievable schemes which

yielded lower bounds to the bottleneck rate were provided by

[16]. The work was then extended to the vector case by [17]

and [18].

In this paper, we extend the work of [16] to the primitive

Gaussian diamond channel with two relays, each experiencing

i.i.d. Rayleigh fading. To evaluate the achievable bottleneck

rate (or relevant information), we first obtain an upper bound

by assuming that the destination node knows the CSI and the

relays can cooperate with each other. Then, we provide three

schemes to compress the observations at different relays and

obtain several lower bounds to the bottleneck rate. Numerical

results show that with simple symbol-by-symbol relay pro-

cessing and compression, the lower bounds obtained by the

proposed achievable schemes can come close to the upper

bound on a wide range of relevant system parameters. Since

the problem considered in this paper can be formulated either

from [8] (information transmission) or from [13], [14] (log-

loss CEO), the proposed upper bound and achievable schemes

apply to both models with different operational meanings.

II. PROBLEM FORMULATION

As shown in Fig. 1, this paper considers a primitive Gaussian

diamond channel with two relays and studies the distributed

information bottleneck (D-IB) problem. The source node trans-

mits signal X to the relays over Gaussian channels with i.i.d.

Rayleigh fading and each relay is connected to the destination

via an error-free link with capacity Ck, ∀ k ∈ K � {1, 2}.
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Fig. 1. A primitive Gaussian diamond channel with two relays.

The observation of relay k is

Yk = SkX +Nk, (1)

where X ∼ CN (0, 1), Sk ∼ CN (0, 1), and Nk ∼ CN (0, σ2)
are respectively the channel input, channel fading from the

source node to relay k, and Gaussian noise at relay k.

The relays are constrained to operate without knowledge of

the codebooks, i.e., they perform oblivious processing and for-

ward representations of their observations Zk to the destination.

According to [8, Theorem 1], with the bottleneck constraints

satisfied, the achievable communication rate at which the

source node could encode its messages is upper bounded by the

mutual information between X and ZK = {Zk}k∈K. Hence,

we consider the following D-IB problem

max
{p(Zk|Yk,Sk)}

I(X;ZK) (2a)

s.t. I(YT , ST ;ZT |ZT C ) ≤
∑
k∈T

Ck, ∀ T ⊆ K, (2b)

where Ck is the bottleneck constraint of relay k and T C

is the complementary set of T , i.e., T C = K \ T . We

call I(X;ZK) the bottleneck rate and I(YT , ST ;ZT |ZT C )
the compression rate. Since the channel coefficient Sk varies

in each realization and is only known at the relay k, ST
is included in the compression rate formulation. In (2), we

aim to find conditional distributions p(Zk|Yk, Sk) such that

collectively, the compressed signals at the destination preserve

as much the original information from the source as possible.

Note that we formulate problem (2) based on [8, Theo-

rem 1]. Alternatively, we may also arrive at (2) by using [13,

Theorem 1] (with a simple change of variable). For brevity,

this paper describes the model using single letters. The more

operational model characterized with n-letter sequences can

be similarly defined as in [8] and [13]. As explained in the

introduction, [8] and [13] respectively considered information

transmission in uplink cloud radio access networks (CRANs)

and distributed CEO problem, which have different operational

meanings. In a CEO problem, the source sequence is no

longer considered as a codeword. There is thus no need

to assume obliviousness at the relays and I(X;ZK) is the

relevant information (between the source sequence and the

reconstructed sequence) rather than the communication rate

[14]. In this sense, focusing on numerical problem (2), the

upper bound and achievable schemes proposed in the following

sections apply to different scenarios.

III. INFORMED RECEIVER UPPER BOUND

Similar to the one-relay IB problems studied in [16]–[18],

an obvious upper bound to problem (2) can be obtained by

assuming that the destination node knows all the channel

coefficients SK = {Sk}k∈K. We call this bound the informed

receiver upper bound. The D-IB problem then becomes

max
{p(Zk|Yk,Sk)}

I(X;ZK|SK) (3a)

s.t. I(YT ;ZT |ZT C , SK) ≤
∑
k∈T

Ck, ∀ T ⊆ K. (3b)

Note that if Sk, ∀k ∈ K are fixed constants and are perfectly

known at the destination node, condition SK will be useless,

and in this case, according to [8, Theorem 5], the optimal value

of problem (3) is

R(ρK, CK) =

max
{rk}

{
min
T ⊆K

{
log

[
1+

∑
k∈T C

ρk
(
1−2−rk

)]
+

∑
k∈T

(Ck−rk)

}}
,

(4)

where CK = {Ck}k∈K, ρK = {ρk}k∈K, ρk = |Sk|2/σ2 is

the channel signal-to-noise ratio (SNR), and rk ≥ 0 is an

intermediate variable. Notice that if we formulate problem

(2) based on [13, Theorem 1], (4) can also be obtained by

using [13, Theorem 3] and [14, Theorem 2]. Introducing an

auxiliary variable β, R(ρK, CK) can be obtained by solving

the following equivalent problem

max
r1,r2,β

β (5a)

s.t. log

[
1+

∑
k∈T C

ρk
(
1−2−rk

)]
+

∑
k∈T

(Ck−rk)≥β, ∀ T ⊆K,

(5b)

0 ≤ rk ≤ Ck, ∀ k ∈ K. (5c)

It can be readily found that (5) is a convex problem and can

thus be optimally solved.
Using (4), problem (3), where the Rayleigh fading channels

vary in each realization, can be solved by considering

max
cK

E [R(ρK, cK)] (6a)

s.t. E [ck(ρk)] ≤ Ck, ∀ k ∈ K, (6b)

ck(ρk) ≥ 0, ∀ k ∈ K, (6c)

where cK = {ck(ρk)}k∈K, ck(ρk) represents the allocation of

the bottleneck rate Ck for the channel realization with SNR

ρk, and the expectation is taken over the random SNRs ρK.

Note that though the optimal value of R(ρK, CK) in (4) can

be obtained by solving its equivalent and convex transforma-

tion (5), its closed-form expression is unachievable. Hence,

different from problems [16, (6)] and [18, (4)], which admit

the optimal closed-form solutions, problem (6) is intractable.

We thus leave (6) as an open problem for the future.
To obtain a simple upper bound to the bottleneck rate,

besides the assumption that the destination node knows SK,

we further assume that the relays can cooperate such that each

relay also knows the observations Yk and Sk of the other relay.

Actually, the network in this case can be seen as a system with

a source node, a two-antenna relay, a destination node, and

bottleneck constraint C1 + C2, and problem (3) becomes

max
p(ZK|YK,SK)

I(X;ZK|SK) (7a)

s.t. I(YK;ZK|SK) ≤ C1 + C2. (7b)
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Denote vector S = (S1, S2)
T . Obviously, the matrix SSH has

only one positive eigenvalue λ. It is known from [18, (A17)]

that the probability density function (pdf) of λ is

fλ(λ) = λe−λ, ∀ λ ≥ 0. (8)

Then, according to [18, Theorem 1], the solution of prob-

lem (7), which forms an upper bound to the bottleneck rate

I(X;ZK) in (2a), is given by

Rub =

∫ ∞

νσ2

[
log

(
1 +

λ

σ2

)
− log(1 + ν)

]
fλ(λ)dλ, (9)

where ν is chosen such that the following bottleneck constraint

is met ∫ ∞

νσ2

(
log

λ

νσ2

)
fλ(λ)dλ = C1 + C2. (10)

IV. ACHIEVABLE SCHEMES

In this section, we provide several achievable schemes where

each scheme satisfies the bottleneck constraint and gives a

lower bound to the bottleneck rate.

A. Quantized channel inversion (QCI) scheme

In our first scheme, each relay first gets an estimate of the

channel input using channel inversion and then transmits the

quantized noise levels as well as the compressed noisy signal

to the destination node.

In particular, using channel inversion to Yk, i.e., multiplying

Yk by
S∗
k

|Sk|2 , we get

X̃k = X +
S∗
k

|Sk|2
Nk � X +

√
ξkN

′
k, (11)

where ξk = |Sk|−2, N ′
k = e−jφkNk, and φk denotes the

phase of channel state Sk. Due to the fact that the noise Nk

is rotationally invariant, N ′
k has the same statistics as Nk, i.e.,

N ′
k ∼ CN (0, σ2).
We fix a finite grid of J positive quantization points B =

{b1, · · · , bJ}, where b1 ≤ b2 ≤ · · · ≤ bJ−1 < bJ , bJ = +∞,

and define the following ceiling operation⌈
ξk

⌉
B = min

b∈B
{ξk ≤ b}. (12)

Then, each relay forces the channel (11) to belong to a finite

set of quantized levels by adding artificial noise, i.e., by

introducing physical degradation as follows

X̂k = X̃k +
√⌈

ξk
⌉
B − ξkN

′′
k

= X +
√
ξkN

′
k +

√⌈
ξk

⌉
B − ξkN

′′
k , (13)

where N ′′
k ∼ CN (0, σ2) is independent of everything else.

Since the relay k knows ξk in each channel realization, (13)

is a Gaussian channel with noise power
⌈
ξk

⌉
Bσ

2. To evaluate

the bottleneck rate, we denote the quantized SNR of channel

(13) when
⌈
ξk

⌉
B = bjk by

ρ̂k,jk =
1

bjkσ
2
, ∀ k ∈ K, jk ∈ J , (14)

where J = {1, · · · , J}, and define probability

P̂k,jk = Pr
{⌈

ξk
⌉
B = bjk

}
, ∀ jk ∈ J . (15)

From [19, Theorem 5.3.1] it is known that the minimum

number of quantization bits necessary for compressing
⌈
ξk

⌉
B

is

Ĥk = −
J∑

jk=1

P̂k,jk log P̂k,jk , (16)

which is actually the entropy of
⌈
ξk

⌉
B. The remaining capacity

available at relay k for transmitting X̂k is thus Ck − Ĥk. We

use ck,jk to denote the partial bottleneck rate allocated by relay

k to compress X̂k for a given channel use with
⌈
ξk

⌉
B = bjk .

In addition, we use Rj1,j2 to indicate the achievable rate when⌈
ξ1
⌉
B = bj1 and

⌈
ξ2
⌉
B = bj2 .

Note that from (14) and the definition of quantization points

in B, it is known that if jk = J , ρ̂k,jk = 0. In this case, we

let ck,J = 0. To evaluate the bottleneck rate, we first consider

several special cases with 0 SNR at relay 1 or relay 2 or both

of them. If j1 = j2 = J , it is obvious that RJ,J = 0. If

j1 = J and j2 ≤ J − 1, the system reduces to an one-relay

case as in [16]–[18]. Then, using the bottleneck rate of the

one-relay block-fading Gaussian channel given in [6], we have

the following achievable rate

RJ,j2 = log (1 + ρ̂2,j2)− log
(
1 + ρ̂2,j22

−c2,j2
)
. (17)

Similarly, if j1 ≤ J − 1 and j2 = J , we have c2,J = 0 and

Rj1,J = log (1 + ρ̂1,j1)− log
(
1 + ρ̂1,j12

−c1,j1
)
. (18)

For the other cases with j1, j2 ∈ J \J , Rj1,j2 can be obtained

as follows by using (4),

Rj1,j2 = max
{rk,j1,j2

}

{
min
T ⊆K

{
log

[
1+

∑
k∈T C

ρ̂k,jk
(
1−2−rk,j1,j2

)]

+
∑
k∈T

(ck,jk − rk,j1,j2)

}}
, ∀ j1, j2 ∈ J \ J. (19)

Based on (17), (18), and (19), a lower bound to the bottleneck

rate, which we will denote by Rlb1, can be obtained by solving

the following problem

max
{ck,jk}

J∑
j1=1

J∑
j2=1

P̂1,j1 P̂2,j2Rj1,j2 (20a)

s.t.

J−1∑
jk=1

P̂k,jkck,jk ≤ Ck − Ĥk, ∀ k ∈ K, (20b)

ck,jk ≥ 0, ∀ k ∈ K, jk ∈ J \ J, (20c)

ck,J = 0, ∀ k ∈ K. (20d)

Due to the embedded maxmin problem in (19), it is difficult to

directly solve (20). However, similar to (5), we may introduce

βj1,j2 for each Rj1,j2 , ∀j1, j2 ∈ J \ J and rewrite (20) in a

simple and convex form, which can then be optimally solved

by some general tools. Due to space limitation, we do not give

the details here.

B. Truncated channel inversion (TCI) scheme

In the second scheme, we put a threshold Sth on magnitude

of the state Sk such that zero capacity is allocated to states with

|Sk| < Sth. Specifically, when |Sk| < Sth, the relay k does not

transmit its observation, while when |Sk| ≥ Sth, it takes X̃k

in (11) as the new observation and transmits a compressed
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version of X̃k to the destination node. The information about

whether to transmit the observation or not is encoded and sent

to the destination node. Before evaluating the bottleneck rate,

we first define the following probabilities

P̃k = Pr {|Sk| ≥ Sth} , ∀ k ∈ K, (21)

and denote

H̃k = −P̃k log P̃k − (1− P̃k) log(1− P̃k),

σ̃2
k = E

[
|Sk|−2σ2| |Sk| ≥ Sth

]
, ρ̃k =

1

σ̃2
k

, ∀ k ∈ K, (22)

where H̃k is the minimum number of bits required for inform-

ing the destination node if |Sk| ≥ Sth or not, σ̃2
k can be seen as

the noise power in (11) when |Sk| ≥ Sth and ρ̃k can be taken

as the SNR. When |Sk| ≥ Sth, define auxiliary variable

X̃k,g = X +N ′
k,g, (23)

where N ′
k,g is the Gaussian noise with zero-mean and the same

second moment as
√
ξkN

′
k in (11), i.e, N ′

k,g ∼ CN (0, σ̃2
k).

Note that for a given threshold Sth, σ̃2
k is fixed. It can thus

be assumed to be known at the destination node with no

bandwidth cost. Let Zk,g be a representation of X̃k,g given

bottleneck constraint Ck.

Now we evaluate the bottleneck rate. Since there are two

relays and each of them determines to transmit or not based on

the state magnitude, in the following, we consider four different

cases by comparing |Sk| with the threshold Sth and derive a

lower bound to the bottleneck rate for each case. First, when

|S1| < Sth and |S2| < Sth, it is obvious that

I(X;Z1, Z2||S1| < Sth, |S2| < Sth) = 0, (24)

since both the relays do not transmit any observation to the

destination node. If |S1| ≥ Sth and |S2| < Sth, the system

reduces to a one-relay case. Using the bottleneck rate of

the one-relay Gaussian channel in [16] and the fact that

for a Gaussian input, Gaussian noise minimizes the mutual

information [19, (9.178)], I(X;Z1, Z2||S1| ≥ Sth, |S2| < Sth)
can be lower bounded by

Rlb2
1,0 = I(X;Z1,g, Z2,g||S1| ≥ Sth, |S2| < Sth)

= log (1 + ρ̃1)− log
(
1 + ρ̃12

−C1−H̃1
P̃1

)
, (25)

where Zk,g is a representation of X̃k,g given in (23). Analo-

gously, when |S1| < Sth and |S2| ≥ Sth, I(X;Z1, Z2||S1| <
Sth, |S2| ≥ Sth) is lower bounded by

Rlb2
0,1 = log (1 + ρ̃2)− log

(
1 + ρ̃22

−C2−H̃2
P̃2

)
. (26)

When |S1| ≥ Sth and |S2| ≥ Sth, a lower bound to

I(X;Z1, Z2||S1| ≥ Sth, |S2| ≥ Sth), can be obtained from

(4) by replacing ρk and Ck with ρ̃k and Ck−H̃k

P̃k
, i.e.,

Rlb2
1,1 =

max
{rk}

{
min
T ⊆K

{
log

[
1+

∑
k∈T C

ρ̃k
(
1−2−rk

)]
+

∑
k∈T

(
Ck−H̃k

P̃k

−rk

)}}
.

(27)

Accordingly, a lower bound to I(X;Z1, Z2) is thus given by

Rlb2 = P̃1(1− P̃2)R
lb2
1,0 + (1− P̃1)P̃2R

lb2
0,1 + P̃1P̃2R

lb2
1,1, (28)

the value of which could be obtained by introducing an

auxiliary variable to (27) and solving the resulted convex

problem as we did in (5).

C. MMSE-based scheme

In this subsection, we assume that each relay k first produces

the MMSE estimate of X based on (Yk, Sk), and then source-

encodes this estimate. In particular, given (Yk, Sk), the MMSE

estimate of X obtained by relay k is

X̄k =
S∗
k

|Sk|2 + σ2
Yk =

|Sk|2
|Sk|2 + σ2

X +
S∗
k

|Sk|2 + σ2
Nk. (29)

Taking X̄k as a new observation, we assume that relay k
quantizes X̄k by choosing PZk|X̄k

to be a conditional Gaussian

distribution, i.e.,

Zk = X̄k +Qk � UkX +Wk, (30)

where Qk ∼ CN (0, Dk) is independent of everything else,

Uk = |Sk|2
|Sk|2+σ2 , and Wk =

S∗
k

|Sk|2+σ2Nk+Qk. Let X̄k,g denote

a zero-mean circularly symmetric complex Gaussian random

variable with the same second moment as X̄k, i.e., X̄k,g ∼
CN

(
0,E

[
|X̄k|2

])
, and Zk,g = X̄k,g + Qk. Then, using the

fact that Gaussian input maximizes the mutual information of

a Gaussian additive noise channel, we have

I(X̄k;Zk) ≤ I(X̄k,g;Zk,g) = log

(
1 +

E
[
|X̄k|2

]
Dk

)
. (31)

Let

log

(
1 +

E
[
|X̄k|2

]
Dk

)
= Ck. (32)

We thus have

I(X̄k;Zk) ≤ Ck, (33)

and Dk can be calculated as

Dk =
E
[
|X̄k|2

]
2Ck − 1

. (34)

In the following, we first show that with (33), the bottleneck

constraint of the considered system, i.e.,

I(X̄T ;ZT |ZT C ) ≤
∑
k∈T

Ck, ∀ T ⊆ K, (35)

can be guaranteed, and then provide a lower bound to the

bottleneck rate I(X;Z1, Z2).
Since Z1 is independent of Z2 given X̄1 and conditioning

reduces differential entropy,

I(X̄1;Z1|Z2) = h(Z1|Z2)− h(Z1|X̄1, Z2)

≤ h(Z1)− h(Z1|X̄1) = I(X̄1;Z1) ≤ C1.
(36)

Analogously, we also have

I(X̄2;Z2|Z1) ≤ I(X̄2;Z2) ≤ C2. (37)

Using the chain rule of mutual information,

I(X̄1, X̄2;Z1, Z2)

=I(X̄1, X̄2;Z1) + I(X̄1, X̄2;Z2|Z1)

=I(X̄1;Z1)+I(X̄2;Z1|X̄1)+I(X̄1;Z2|Z1)

+I(X̄2;Z2|X̄1, Z1) = I(X̄1;Z1) + I(X̄2;Z2|X̄1, Z1), (38)
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where we used

I(X̄2;Z1|X̄1) = I(X̄2;Q1) = 0,

I(X̄1;Z2|Z1) = I(Q1;Z2|Z1) = 0. (39)

(39) holds since Q1 is independent of everything else. More-

over,

I(X̄2;Z2|X̄1, Z1) = I(X̄2;Z2|X̄1)

= h(Z2|X̄1)− h(Z2|X̄1, X̄2)

= h(Z2|X̄1)− h(Z2|X̄2)

≤ h(Z2)− h(Z2|X̄2)

= I(X̄2;Z2). (40)

Combining (33), (38), and (40), we have

I(X̄1, X̄2;Z1, Z2) ≤ I(X̄1;Z1)+I(X̄2;Z2) ≤ C1+C2. (41)

From (36), (37), and (41), it is known that the bottleneck

constraint (35) is satisfied.

The next step is to evaluate I(X;Z1, Z2).

I(X;Z1, Z2)

=h(Z1, Z2)− h(Z1, Z2|X)

≥h(Z1, Z2|S1, S2)− h(Z1, Z2|X)

=h(Z1, Z2|S1, S2)− h(Z1|X)− h(Z2|X), (42)

where the last step holds Z2 is independent of Z1 given X .

Then, we evaluate the terms in (42) separately. Denote

Var(Wk|Sk) =
Ukσ

2

|Sk|2 + σ2
+Dk � Vk. (43)

Since X , Nk, and Qk are independent normal variables, given

(S1, S2), Z1 and Z2 are jointly Gaussian. Hence,

h(Z1, Z2|S1, S2)

=E

[
log(πe)2 det

([
U2
1 U1U2

U1U2 U2
2

]
+

[
V1 0
0 V2

])]
. (44)

Moreover, since Gaussian distribution maximizes the entropy

over all distributions with the same variance [20], we have

h(Zk|X) ≤ E
[
log πe

(
Var(Uk)|X|2 + E [Vk]

)]
. (45)

Substituting (44) and (45) into (42), a lower bound to

I(X;Z1, Z2) can be obtained as follows

Rlb3 = E

[
log det

([
U2
1 U1U2

U1U2 U2
2

]
+

[
V1 0
0 V2

])]

−
K∑

k=1

E
[
log

(
Var(Uk)|X|2 + E [Vk]

)]
. (46)

V. NUMERICAL RESULTS

In this section, we investigate the lower bounds obtained by

the proposed achievable schemes and compare them with the

upper bound. For convenience, we assume equal bottleneck

constraint, i.e., C1 = C2 = C, and when performing the QCI

scheme, we choose the quantization levels as quantiles such

that we obtain the uniform pmf P̂k,jk = 1
J , ∀k ∈ K, jk ∈ J .

When performing the TCI scheme, we vary Sth from 0 to 2 in

step 0.1 and choose the one which gives the largest rate value.

In Fig. 2, the upper and lower bounds are depicted versus

SNR ρ = 1
σ2 . It can be found that for relatively small ρ, Rlb1
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Fig. 2. Upper and lower bounds to the bottleneck rate versus ρ with C = 10
bits/complex dimension.
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Fig. 3. Upper and lower bounds to the bottleneck rate versus C with ρ =
40 dB.

obtained by the QCI scheme with 3 quantization bits and Rlb2

resulted from the TCI scheme get quite close to the upper

bound. As ρ grows, both Rub and Rlb2 approach the sum

capacity of the two relay-destination links, i.e., C1 + C2. In

addition, for the QCI scheme, there is a non-trivial optimal

number of quantization bits which in general depends on the

system parameters.

The effect of constraint C is investigated in Fig. 3. It shows

that as C increases, except Rlb3, all bounds grow monotonically

and converge to constants. When C is large, Rlb1 essen-

tially matches the Rub, suggesting a good performance of the

QCI scheme. Counterintuitively, Rlb3 increases first and then

slightly decreases with C. This is because when calculating

Rlb3, we made two relaxations in (42) and (45).

VI. CONCLUSIONS

This work extends the IB problem of the one-relay case

in [16] to a Gaussian diamond channel with Rayleigh fading.

Due to the bottleneck constraint, the destination node cannot

get the perfect CSI from the relays. Our results show that with

simple symbol-by-symbol relay processing and compression,

we can get bottleneck rate close to the upper bound on a wide

range of relevant system parameters. In the future, instead

of assuming oblivious relays, we will address this primitive

diamond channel with codebook knowledge at the relays.
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