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Abstract: A double-sided variant of the information bottleneck method is considered. Let (X,Y) be
a bivariate source characterized by a joint pmf PXY . The problem is to find two independent channels
PU|X and PV|Y (setting the Markovian structure U→ X→ Y → V), that maximize I(U;V) subject to
constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian
X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general
SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are
optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z
and S channels are optimal when the correlation is 1 (i.e., X = Y) and provide supporting numerical
evidence. Furthermore, we present a Blahut–Arimoto type alternating maximization algorithm and
demonstrate its performance for a representative setting. This problem is closely related to the
domain of biclustering.

Keywords: information bottleneck; lossy compression; remote source coding; biclustering

1. Introduction

The information bottleneck (IB) method [1] plays a central role in advanced lossy source
compression. The analysis of classical source coding algorithms is mainly approached
via the rate-distortion theory, where a fidelity measure must be defined. However, speci-
fying an appropriate distortion measure in many real-world applications is challenging
and sometimes infeasible. The IB framework introduces an essentially different concept,
where another variable is provided, which carries the relevant information in the data to
be compressed. The quality of the reconstructed sequence is measured via the mutual
information metric between the reconstructed data and the relevance variables. Thus, the
IB method provides a universal fidelity measure.

In this work, we extend and generalize the IB method by imposing an additional
bottleneck constraint on the relevant variable and considering noisy observation of the
source. In particular, let (X,Y) be a bivariate source characterized by a fixed joint probability
law PXY and consider all Markov chains U→ X→ Y → V. The Double-Sided Information
Bottleneck (DSIB) function is defined as [2]:

RPXY
(Cu, Cv) , max I(U;V), (1)

where the maximization is over all PU|X and PV|Y satisfying I(U;X) ≤ Cu and I(V;Y) ≤ Cv.
This problem is illustrated in Figure 1. In our study, we aim to determine the maximum
value and the achieving conditional distributions (PU|X,PV|Y) (test channels) of (1) for
various fixed sources PXY and constraints Cu and Cv.
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Figure 1. Block diagram of the Double-Sided Information Bottleneck function.

The problem we consider originates from the domain of clustering. Clustering is
applied to organize similar entities in unsupervised learning [3]. It has numerous practical
applications in data science, such as: joint word-document clustering, gene expression [4],
and pattern recognition. The data in those applications are arranged as a contingency table.
Usually, clustering is performed on one dimension of the table, but sometimes it is helpful
to apply clustering on both dimensions of the contingency table [5], for example, when
there is a strong correlation between the rows and the columns of the table or when high-
dimensional sparse structures are handled. The input and output of a typical biclustering
algorithm are illustrated in Figure 2. Consider an S× T data matrix (ast). Find partitions
Bk ⊆ {1, . . . , S} and Cl ⊆ {1, . . . , T}, k = 1, . . . , K, l = 1, . . . , L such that all elements of the
“biclusters” [6] (ast)s∈Bk ,t∈Cl are homogeneous. The measure of homogeneity depends on
the application.

Biclustering
Algorithm

1 2 3 4 5 6 7 8 9 10 11
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

A
B
C
E
F
H
J
K
L
N

2 4 10
D
G
I

M
O

1 5 6 7

B
K

1 7

D
G
I

M
O

1 2 3 4 5 6 7 8 9 10 11

Clusters

Figure 2. Illustration of a typical biclustering algorithm.

This problem can also be motivated by a remote source coding setting. Consider a
latent random variable W, which satisfies U← X← W→ Y → V and represents a source
of information. We have two users that observe noisy versions of W, i.e., X and Y. Those
users try to compress the observed noisy data so that their reconstructed versions, U and
V, will be comparable under the maximum mutual information metric. The problem we
consider also bears practical applications. Imagine a distributed sensor network where
the different edges measure a noisy version of a particular signal but are not allowed to
communicate with each other. Each of the nodes performs compression of the received
signal. Under the DSIB framework, we can find the optimal compression schemes that
preserve the reconstructed symbols’ proximity subject to the mutual information measure.

Dhillon et al. [7] initiated an information-theoretic approach to biclustering. They have
regarded the normalized non-negative contingency table as a joint probability distribution
matrix of two random variables. Mutual information was proposed as a measure for
optimal co-clustering. An optimization algorithm was presented that intertwines both
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row and column clustering at all stages. Distributed clustering from a proper information-
theoretic perspective was first explicitly considered by Pichler et al. [2]. Consider the
model illustrated in Figure 3. A bivariate memory-less source with joint law PXY generates
n i.i.d. copies (Xn,Yn) of (X,Y). Each sequence is observed at two different encoders,
and each encoder generates a description of the observed sequence, fn(Xn) and gn(Yn).
The objective is to construct the mappings fn and gn such that the normalized mutual
information between the descriptions would be maximal while the description coding
has bounded rate constraints. Single-letter inner and outer bounds for a general PXY

were derived. An example of a doubly symmetric binary source (DSBS) was given, and
several converse results were established. Furthermore, connections were made to the
standard IB [1] and the multiple description CEO problems [8]. In addition, the equivalence
of information-theoretic biclustering problem to hypothesis testing against independence
with multiterminal data compression and a pattern recognition problem was established
in [9,10], respectively.

Encoder 1 PXY Encoder 2

| fn(Xn)| ≤ 2nCx |gn(Yn)| ≤ 2nCy

max 1
n I( fn(Xn); gn(Yn))

fn(Xn) Xn Yn gn(Yn)

Figure 3. Block diagram of the information-theoretic biclustering problem.

The DSIB problem addressed in our paper is, in fact, a single-letter version of the
distributed clustering setup [2]. The inner bound in [2] coincides with our problem defini-
tion. Moreover, if the Markov condition U→ X→ Y → Z is imposed on the multi-letter
variant, then those problems are equivalent. A similar setting, but with a maximal correla-
tion criterion between the reconstructed random variables, has been considered in [11,12].
Furthermore, it is sometimes the case that the optimal biclustering problem is more straight-
forward to solve than its standard, single-sided, clustering counterpart. For example, the
Courtade–Kumar conjecture [13] for the standard single-sided clustering setting was ulti-
mately proven for the biclustering setting [14]. A particular case, where (X,Y) are drawn
from DSBS distribution and the mappings fn and gn are restricted to be Boolean functions,
was addressed in [14]. The bound I( fn(Xn); gn(Yn)) ≤ I(X;Y) was established, which is
tight if and only if fn and gn are dictator functions.

1.1. Related Work

Our work extends the celebrated standard (single-sided) IB (SSIB) method introduced
by Tishby et al. [1]. Indeed, consider the problem illustrated in Figure 4. This single-sided
counterpart of our work is essentially a remote source coding problem [15–17], choosing
the distortion measure as the logarithmic loss. The random variable U represents the noisy
version (X) of the source (Y) with a constrained number of bits (I(U;X) ≤ C), and the
goal is to maximize the relevant information in U regarding Y (measured by the mutual
information between Y and U). In the standard IB setup, I(U;X) is referred to as the
complexity of U, and I(Y;U) is referred to as the relevance of U.

For the particular case where (U,X,Y) are discrete, an optimal PU|X can be found
by iteratively solving a set of self-consistent equations. A generalized Blahut–Arimoto
algorithm [18–21] was proposed to solve those equations. The optimal test-channel PU|X
was characterized using a variation principle in [1]. A particular case of deterministic
mappings from X to U was considered in [22], and algorithms that find those mappings
were described.
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Figure 4. Block diagram of the Single-Sided Information Bottleneck function.

Several representing scenarios have been considered for the SSIB problem. The setting
where the pair (X,Y) is a doubly symmetric binary source (DSBS) with transition probability
p was addressed from various perspectives in [17,23,24]. Utilizing Mrs. Gerber’s Lemma
(MGL) [25], one can show that the optimal test-channel for the DSBS setting is a BSC.
The case where (X, Y) are jointly multivariate Gaussians in the SSIB framework was first
considered in [26]. It was shown that the optimal distribution of (U, X, Y) is also jointly
Gaussian. The optimality of the Gaussian test channel can be proven using EPI [27], or
exploiting I-MMSE and Single Crossing Property [28]. Moreover, the proof can be easily
extended to jointly Gaussian random vectors (X, Y) under the I-MMSE framework [29].

In a more general scenario where X = Y + Z and only Z is fixed to be Gaussian, it
was shown that discrete signaling with deterministic quantizers as test-channel sometimes
outperforms Gaussian PX [30]. This exciting observation leads to a conjecture that discrete
inputs are optimal for this general setting and may have a connection to the input ampli-
tude constrained AWGN channels where it was already established that discrete input
distributions are optimal [31–33]. One reason for the optimality of discrete distributions
stems from the observation that constraining the compression rate limits the usable input
amplitude. However, as far as we know, it remains an open problem.

There are various related problems considered in the literature that are equivalent to
the SSIB; namely, they share a similar single-letter optimization problem. In the conditional
entropy bound (CEB) function, studied in [17], given a fixed bivariate source (X,Y) and
an equality constraint on the conditional entropy of X given U, the goal is to minimize
the conditional entropy of Y given U over the set of U such that U→ X→ Y constitute a
Markov chain. One can show that CEB is equivalent to SSIB. The common reconstruction CR
setting [34] is a source coding with a side-information problem, also known as Wyner–Ziv
coding, as depicted in Figure 5; with an additional constraint, the encoder can reconstruct
the same sequence as the decoder. Additional assumption of log-loss fidelity results in
a single-letter rate-distortion region equivalent to the SSIB. In the problem of information
combining (IC) [23,35], motivated by message combining in LDPC decoders, a source of
information, PY, is observed through two test-channels PX|Y and PZ|Y. The IC framework
aims to design those channels in two extreme approaches. For the first, IC asks what those
channels should be to make the output pair (X,Z) maximally informative regarding Y. On
the contrary, IC also considers how to design PX|Y and PZ|Y to minimize the information
in (X,Z) regarding Y. The problem of minimizing IC can be shown to be equivalent to
the SSIB. In fact, if (X,Y) is a DSBS, then by [23], PZ|Y is a binary symmetric channel (BSC),
recovering similar results from (Section IV.A of [17]).

PXY Enc Dec
Xn M ∈ [1 : 2nR]

Un

Yn

Figure 5. Block diagram of Source Coding with Side Information.
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The IB method has been extended to various network topologies. A multilayer exten-
sion of the IB method is depicted in Figure 6. This model was first considered in [36]. A
multivariate source (X,Y1, . . . ,YL) generates a sequence of n i.i.d. copies (Xn,Yn

1 , . . . ,Yn
L).

The receiver has access only to the sequence Xn while (Yn
1 , . . . ,Yn

L) are hidden. The decoder
performs a consecutive L-stage compression of the observed sequence. The representa-
tion at step k must be maximally informative about the respective hidden sequence Yk,
k ∈ {1, 2, . . . , L}. This setup is highly motivated by the structure of deep neural networks.
Specific results were established for the binary and Gaussian sources.

PXY1 ...YL f (n)1 f (n)2 f (n)L

g(n)1 g(n)2 g(n)L

Xn M1 M2 ML

Ŷn
1

I(Yn
1 ; Ŷn

1 ) ≥ nµ1

Ŷn
2

I(Yn
2 ; Ŷn

2 ) ≥ nµ2

Ŷn
L

I(Yn
L; Ŷn

L) ≥ nµL

Figure 6. Block diagram of the Multi-Layer IB.

The model depicted in Figure 7 represents a multiterminal extension of the standard IB.
A set of receivers observe noisy versions (X1,X2, . . . ,XK) of some source of information Y.
The channel outputs (X1,X2, . . . ,XK) are conditionally independent given Y. The receivers
are connected to the central processing unit through noiseless but limited-capacity backhaul
links. The central processor aims to attain a good prediction Ŷ of the source Y based on
compressed representations of the noisy version of Y obtained from the receivers. The
quality of prediction is measured via the mutual information merit between Y and Ŷ. The
Distributive IB setting is essentially a CEO source coding problem under logarithmic loss
(log-loss) distortion measure [37]. The case where (X,Y1, . . . ,YK) are jointly Gaussian ran-
dom variables was addressed in [20], and a Blahut–Arimoto-type algorithm was proposed.
An optimized algorithm to design quantizers was proposed in [38].

Source
PY

PX1|Y Enc 1

PX2|Y Enc 2

PXK |Y Enc K

PŶ|MK
1

Y

X1

X2

XK

M1

M2

MK

Ŷ

Figure 7. Block diagram of the Distributive IB.

A cooperative multiterminal extension of the IB method was proposed in [39]. Let
(Xn

1 ,Xn
2 ,Yn) be n i.i.d. copies of the multivariate source (X1,X2,Y). The sequences Xn

1 and
Xn

2 are observed at encoders 1 and 2, respectively. Each encoder sends a representation of
the observed sequence through a noiseless yet rate-limited link to the other encoder and
the mutual decoder. The decoder attempts to reconstruct the latent representation sequence
Yn based on the received descriptions. As shown in Figure 8, this setup differs from the
CEO setup [40] since the encoders can cooperate during the transmission. The set of all
feasible rates of complexity and relevance were characterized, and specific regions for the
binary and Gaussian sources were established. There are many additional variations of
multi-user IB in the literature [20,26,35–37,39–44].
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Encoder 1
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1 Xn

2
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Ŷn

Figure 8. Block diagram of the Collaborative IB.

The IB problem connects to many timely aspects, such as capital investment [43], dis-
tributed learning [45], deep learning [46–52], and convolutional neural networks [53,54]. More-
over, it has been recently shown that the IB method can be used to reduce the data transfer
rate and computational complexity in 5G LDPC decoders [55,56]. The IB method has
also been connected with constructing good polar codes [57]. Due to the exponential
output-alphabet growth of polarized channels, it becomes demanding to compute their
capacities to identify the location of “frozen bits". Quantization is employed in order to
reduce the computation complexity. The quality of the quantization scheme is assessed via
mutual information preservation. It can be shown that the corresponding IB problem upper
bounds the quantization technique. Quantization algorithms based upon the IB method
were considered in [58–60]. Furthermore, a relationship between the KL means algorithm
and the IB method has been discovered in [61].

A recent comprehensive tutorial on the IB method and related problems is given
in [24]. Applications of IB problem in machine learning are detailed in [26,45–47,51,52,62].

1.2. Notations

Throughout the paper, random variables are denoted using a sans-serif font, e.g., X,
their realizations are denoted by the respective lower-case letters, e.g., x, and their alphabets
are denoted by the respective calligraphic letters, e.g., X . Let X n stand for the set of all
n-tuples of elements from X . An element from X n is denoted by xn = (x1, x2, . . . , xn) and
substrings are denoted by xj

i = (xi, xi+1, . . . , xj). The cardinality of a finite set, say X , is
denoted by |X |. The probability mass function (pmf) of X, the joint pmf of X and Y, and
the conditional pmf of X given Y are denoted by PX, PXY, and PX|Y, respectively. The
expectation of X is denoted by E[X]. The probability of an event E is denoted as P(E).

Let X and Y be an n-ary and m-ary random variables, respectively. The marginal
probability vector is denoted by a lowercase boldface letter, i.e.,

q , (P(X = 1),P(X = 2), . . . ,P(X = n))T . (2)

The probability vector of an n-ary uniform random variable is denoted by un. We
denote by T the transition matrix from X to Y, i.e.,

Tij , P(Y = i|X = j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

The entropy of n-ary probability vector q is given by h(q), where

h(q) , −
n

∑
i=1

qi log qi. (4)

Throughout this paper all logarithms are taken to base 2 unless stated otherwise.
We denote the ones complemented with a bar, i.e., x̄ = 1− x. The binary convolution
of x, y ∈ [0, 1] is defined as x ∗ y , xȳ + x̄y. The binary entropy function is defined by
hb(p) : [0, 1] → [0, 1], i.e., hb(p) , −p log p− p̄ log p̄, and h−1

b (·) its inverse, restricted to
[0, 1/2].
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Let X and Y be a pair of random variables with joint pmf PXY and marginal pmfs
PX = qx and PY = qy. Furthermore, let T (T̄) be the transition matrix from X (Y) to Y (X).
The mutual information between X and Y is defined as:

I(X;Y) = I(qx, T) = I(qy, T̄) = ∑
x∈X

∑
y∈Y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
. (5)

1.3. Paper Outline

Section 2 gives a proper definition of the DSIB optimization problem, mentions various
results directly related to this work, and provides some general preliminary results. The
spotlight of Section 3 is on the binary (X,Y), where we derive bounds on the respective
DSIB function and show a complete characterization for extreme scenarios. The jointly
Gaussian (X,Y) is considered in Section 4, where an elegant representation of an objective
function is presented, and complete characterization in the low-SNR regime is established.
A Blahut–Arimoto-type alternating maximization algorithm will be presented in Section 5.
Representative numerical evaluation of the bounds and the proposed algorithm will be
provided in Section 6. Finally, a summary and possible future directions will be described
in Section 7. The prolonged proofs are postponed to the Appendix A.

2. Problem Formulation and Basic Properties

The DSIB function is a multi-terminal extension of the standard IB [1]. First, we briefly
remind the latter’s definition and give related results that will be utilized for its double-
sided counterpart. Then, we provide a proper definition of the DSIB optimization problem
and present some general preliminaries.

2.1. The Single-Sided Information Bottleneck (SSIB) Function

Definition 1 (SSIB). Let (X,V) be a pair of random variables with |X | = n, |V| = m, and fixed
PXV. Denote by q the marginal probability vector of X, and let T be the transition matrix from X to
V, i.e.,

Tij , P(V = i|X = j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Consider all random variables U satisfying the Markov chain U→ X→ V. The SSIB function
is defined as:

R̂T(q, C) , maximize
PU|X

I(U;V)

subject to I(X;U) ≤ C.
(6)

Remark 1. The SSIB problem defined in (6) is equivalent (has similar solution) to the CEB problem
considered in [17].

Although the optimization problem in (6) is well defined, the auxiliary random vari-
able U may have an unbounded alphabet. The following lemma provides an upper bound
on the cardinality of U , thus relaxing the optimization domain.

Lemma 1 (Lemma 2.2 of [17]). The optimization over U in (6) can be restricted to |U | ≤ n + 1.

Remark 2. A tighter bound, namely |U | ≤ n, was previously proved in [63] for the corresponding
dual problem, namely, the IB Lagrangian. However, since R̂T(q, C) is generally not a strictly
convex function of C, it cannot be directly applied for the primal problem (6).

Note that the SSIB optimization problem (6) is basically a convex function maximiza-
tion over a convex set; thus, the maximum is attained on the boundary of the set.

Lemma 2 (Theorem 2.5 of [17]). The inequality constraint in (6) can be replaced by equality
constraint, i.e., I(X;U) = C.



Entropy 2022, 24, 1321 8 of 37

2.2. The Double-Sided Information Bottleneck (DSIB) Function

Definition 2 (DSIB). Let (X,Y) be a pair of random variables with |X | = n, |Y| = m and fixed
PXY. Consider all the random variables U and V satisfying the Markov chain U→ X→ Y → V.
The DSIB function R : [0, H(X)]× [0, H(Y)]→ R+ is defined as:

RPXY
(Cu, Cv) , maximize

PU|X,PV|Y
I(U;V)

subject to I(X;U)≤Cu and I(Y;V)≤Cv.
(7)

The achieving conditional distributions PU|X and PV|Y will be termed as the optimal test-
channels. Occasionally, we will drop the subscript denoting the particular choice of the bivariate
source PXY.

Note that (7) can be expressed in the following equivalent form:

R(Cu, Cv) , maximize
PV|Y

maximize
PU|X

I(U;V).

subject to subject to

I(Y;V) ≤ Cv I(X;U) ≤ Cu

(8)

Evidently, we can define (8) using (6). Indeed, fix PV|Y so that it satisfies I(Y;V) ≤ Cv.
Denote by TV|Y the transition matrix from Y to V and by TY|X the transition matrix from X
to Y, respectively, i.e.,

(TV|Y)ik , P(V = i|Y = k), 1 ≤ i ≤ |V|, 1 ≤ k ≤ m,

(TY|X)kj , P(Y = k|X = j), 1 ≤ k ≤ m, 1 ≤ j ≤ n.

Denote by qx and qy the marginal probability vectors of X and Y, respectively, and
consider the inner maximization term in (8). Since PV|Y and PXY are fixed, then PXV =

∑y PV|Y(·|y)PXY(·, y) is also fixed. Denote by TV|X , TV|YTY|X the transition matrix from X
to V. Therefore, the inner maximization term in (8) is just the SSIB function with parameters
TV|X and Cu, namely, R̂TV|X(qx, Cu). Hence, our problem can also be interpreted in the
following two equivalent ways:

R(Cu, Cv) , maximize
TV|Y

R̂TV|YTY|X(qx, Cu)

subject to I(qy, TV|Y) ≤ Cv;
(9)

or, similarly, by interchanging the order of maximization in (8), it can be expressed as fol-
lows:

R(Cu, Cv) , maximize
TU|X

R̂TU|XTX|Y (qy, Cv)

subject to I(qx, TU|X) ≤ Cu,
(10)

where TU|X is the transition matrix from X to U, and TX|Y is the transition matrix from Y
to X. This representation gives us a different perspective on our problem as an optimal
compressed representation of the relevance random variable for the IB framework.

Remark 3. Taking Cv = ∞ in (9) results in an deterministic channel from Y to V, i.e., V = Y.
Thus, the DSIB problem defined in (7) reduces to the SSIB problem (6).

The bound from Lemma 1 can be utilized to give cardinality bounding for the double-
sided problem.
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Proposition 1. For the DSIB optimization problem defined in (7), it suffices to consider random
variables U and V with cardinalities |U | ≤ n + 1 and |V| ≤ m + 1.

Proof. Let TU|X and TV|Y be two arbitrary transition matrices. By Lemma 1, there exists
TŨ|X with |Ũ | ≤ n + 1 such that I(Ũ;V) ≥ I(U;V) and I(X; Ũ) ≤ Cu. Similarly, TV|Y can be
replaced with TṼ|Y, |Ṽ | ≤ m + 1 such that I(Ũ; Ṽ) ≥ I(Ũ,V) ≥ I(U;V), and I(Y; Ṽ) ≤ Cv.
Therefore, there exists an optimal solution with |U | ≤ n + 1 and |V| ≤ m + 1.

In the following two sections, we will present the primary analytical outcomes of our
study. First, we consider the scenario where our bivariate source is binary, specifically
DSBS. Then, we handle the case where X and Y are jointly Gaussian.

3. Binary (X,Y)

Let (X,Y) be a DSBS with parameter p, i.e.,

PXY(x, y) =
1
2
(p · 1(x 6= y) + (1− p)1(x = y)). (11)

We entitle the respective optimization problem (7) as the binary double-sided information
bottleneck (BDSIB) and emphasize its dependence on the parameter p as R(Cu, Cv, p).

The following proposition states that the cardinality bound from Lemma 1 can be
tightened in the binary case.

Proposition 2. Considering the optimization problem in (6) with X = Ber(q) and |Y| = 3, binary
U is optimal.

The proof of this proposition is postponed to Appendix A. Using similar justification
for Proposition 1 combined with Proposition 2, we have the following strict cardinality
formula for the BDSIB setting.

Proposition 3. For the respective DSBS setting of (7), it suffices to consider random variables U
and V with cardinalities |U | = |V| = 2.

Note that the above statement is not required for the results in the rest of this section
to hold and will be mainly applied to justify our conjectures via numerical simulations.

We next show that the specific objective function for the binary setting of (7), i.e, the
mutual information between U and V, has an elegant representation which will be useful in
deriving lower and upper bounds.

Lemma 3. The mutual information between U and V can be expressed as follows:

I(U;V) = EPU×PV
[K(U,V, p) log K(U,V, p)], (12)

where the expectation is taken over the product measure PU × PV, U and V are binary random
variables satisfying:

P(U = 0) =
α1 − 1

2
α1 − α0

, P(V = 0) =
β1 − 1

2
β1 − β0

, (13)

the kernel K(u, v, p) is given by:

K(u, v, p) = 2αu ∗ βv ∗ p = 1− (1− 2p)(1− 2αu)(1− 2βv), (14)
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and the reverse test-channels are defined by: αu , P(X = 1|U = u), βv , P(Y = 0|V = v).
Furthermore, since |(1− 2p)(1− 2αu)(1− 2βv)| < 1, utilizing Taylor’s expansion of log(1− x),
we obtain:

I(U;V) =
∞

∑
n=2

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n(n− 1)
. (15)

The general cascade of test-channels and the DSBS, defined by {αu}1
u=0, {βv}1

v=0 and
p, is illustrated in Figure 9. The proof of Lemma 3 is postponed to Appendix B.

0

1

0

1

U X Y V

α
0

α1

p

p

β0

β
1

Figure 9. General test-channel construction of the BDSIB function.

We next examine some corner cases for which R(Cu, Cv, p) is fully characterized.

3.1. Special Cases

A particular case where we have a complete analytical solution is when p tends to
1/2.

Theorem 1. Suppose p = 1
2 − ε, and consider ε→ 0. Then

R(Cu, Cv, ε) = 2ε2 log e · (1− 2h-1
b (1− Cu))

2(1− 2h-1
b (1− Cv))

2 + o(ε2), (16)

and it is achieved by taking PU|X and PV|Y as BSC test-channels satisfying the constraints
with equality.

This theorem follows by considering the low SNR regime in Lemma 3 and is proved
in Appendix D. For the lower bound we take PU|X and PV|Y to be BSCs.

In Section 6 we will give a numerical evidence that BSC test-channels are in fact
optimal provided that p is sufficiently large. However, for small p this is no longer the case
and we believe the following holds.

Conjecture 1. Let X = Y, i.e., p = 0. The optimal test-channels PU|X and PV|X that achieve
R(Cu, Cv, 0) are Z-channel and S-channel respectively.

Remark 4. Our results in the numerical section strongly support this conjecture. In fact they prove
it within the resolution of the experiments, i.e., for optimizing over a dense set of test-channels rather
then all test-channels. Nevertheless, we were not able to find an analytical proof for this result.

Remark 5. Suppose X = Y, I(X;U) = Cu, and I(X;V) = Cv. Since I(U;V) = I(U;X) +
I(V;X)− I(X;U,V) (as U→ X→ Y → V form a Markov chain in this order) then maximizing
I(U;V) is equivalent to minimizing I(X;U,V), namely, minimizing information combining as
in [23,35]. Therefore, Conjecture 1 is equivalent to the conjecture that among all channels with
I(X;U) ≥ Cu and I(Y;V) ≥ Cv, Z and S are the worst channels for information combining.

This observation leads us the following additional conjecture.

Conjecture 2. The test-channels PU|X and PV|X that maximize I(X;U,V) are both Z channels.



Entropy 2022, 24, 1321 11 of 37

Remark 6. Suppose now that p is arbitrary and assume that one of the channels PU|X or PV|Y
is restricted to be a binary memoryless symmetric (BMS) channel (Chapter 4 of [64]), then the
maximal I(U;V) is attained by BSC channels, as those are the symmetric channels minimizing
I(X;U,V) [23]. It is not surprising that once the BMS constraint is removed, symmetric channels
are no longer optimal (see the discussion in (Section VI.C of [23])).

Consider now the case X = Y (p = 0) with an additional symmetry assumption
Cu = Cv. The most reasonable apriori guess is that the optimal test-channels PU|X and PV|X
are the same up to some permutation of inputs and outputs. Surprisingly, this is not the
case, unless they are BSC or Z channels, as the following negative result states.

Proposition 4. Suppose Cu = Cv and the transition matrix from X to V, given by

TV|X =

(
a b

1− a 1− b

)
, (17)

satisfies I(u2, TV|X) = Cv. Consider the respective SSIB optimization problem

R̂TV|X(u2, Cu) = max
PU|X : I(U;X)≤Cu

I(U;V). (18)

The optimal PU|X that attains (6) with qX = u2 and C = Cu does not equal to PV|X or any
permutation of PV|X, unless PV|X is a BSC or a Z channel.

The proof is based on [17] and is postponed to Appendix E.
As for the case of X 6= Y, i.e., p 6= 0, we have the following conjecture.

Conjecture 3. For every (Cu, Cv) ∈ [0, 1] × [0, 1], there exists θ(Cu, Cv), such that for every
p > θ(Cu, Cv) the achieving test-channels PU|X and PV|Y are BSC with parameters α = h−1

b (1−
Cu) and β = h−1

b (1− Cv) respectively.

We will provide supporting arguments for this conjecture via numerical simulations
in Section 6.

3.2. Bounds

In this section we present our lower and upper bounds on the BDSIB function, then we
compare them for various channel parameters. The proofs are postponed to Appendix F.
For the simplicity of the following presentation we define

gb(x) ,
1

2(1− x)
hb(x), x ∈ [0, 1/2], (19)

denote g−1
b (·) as its inverse restricted to [0, 1], and h̄(x) , −x log x.

Proposition 5. The BDSIB function is bounded from below by

R(Cu, Cv, p) ≥

max


1− hb(α ∗ β ∗ p),

1− 1
2δ̄ζ̄

[
h̄(δ ∗ ζ ∗ p) + (1−2ζ) · h̄(δ̄ ∗ p) + (1−2δ) · h̄(ζ̄ ∗ p) + (1−2δ)(1−2ζ) · h̄(p)

]
,

(20)

where α = h−1
b (1− Cu), β = h−1

b (1− Cv), δ = g−1
b (1− Cu), and ζ = g−1

b (1− Cv).
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All terms in the RSH of (20) are attained by taking test-channels that match the con-
straints with equality and plugging them in Lemma 3. In particular: the first term is
achieved by BSC test channels with transition probabilities α and β; the second term is
achieved by taking PU|X be a Z(δ) channel and PV|Y be an S(ζ) channel. The aforemen-
tioned test-channel configurations are illustrated in Figure 10.

0
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1

U X Y V
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ᾱ

p

p

β̄

β

(a) Two BSCs.

0

1

0

1

U X Y V

δ
p

p
ζ

(b) Z and S channels.
Figure 10. Test-channel that achieve the lower bound of Proposition 5.

We compare the different lower bounds derived in Proposition 5 for various values of
constraints. The achievable rate vs channel transition probability p is shown in Figure 11.
Our first observation is that BSC test-channels outperform all other choices for almost all
values of p. However, Figure 12 gives a closer look on small values of p. It is evident that
the combination of Z and S test-channels outperforms any other schemes for small values
of p. We have used this observation as one supporting evidence to Conjecture 1.
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Figure 11. Comparison of the lower bounds.
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Figure 12. Comparison of the lower bounds in high SNR regime.

We proceed to give an upper bound.

Proposition 6. A general upper bound on BDSIB is given by

R(Cu, Cv, p) ≤ min

{
(1− 2p)2(1− 2h−1

b (1− Cu)
2(1− 2h−1

b (1− Cv)
2,

min{1− hb(h−1
b (1− Cu) ∗ p), 1− hb(h−1

b (1− Cv) ∗ p)}.
(21)

Note that the first term can be derived by applying Jensen’s inequality on (12), and
the second term is a combination of the standard IB and the cut-set bound. We postpone
the proof of Proposition 6 to Appendix F.

Remark 7. Since p = 1
2 − ε, we have a factor 2 loss in the first term compared to the precise

behavior we have found for p ≈ 1
2 in Theorem 1. This loss comes from the fact that the bound in (21)

actually upper bounds the χ-squared mutual information between U and V. It is well-known that
for very small I(X;Y) we have that I(X;Y) ≈ 1/2Iχ2(X;Y), see [65].

We compare the different upper bounds from Proposition 6 in Figure 13 for various
bottleneck constraints, and in Figure 14 for various values of channel transition probabilities
p. We observe that there are regions of C and p for which Jensen’s based bound outperforms
the standard IB bound.
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Figure 13. Comparison of the upper bounds for various values of (Cu, Cv).
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Finally, we compare the best lower and upper bounds from Propositions 5 and 6 for
various values of channel parameters in Figure 15. We observe that the bounds are tighter
for asymmetric constraints and high transition probabilities.
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Figure 15. Capacity bounds for various values of p and C = Cu = Cv.

4. Gaussian (X,Y)

In this section we consider a specific setting where (X,Y) is the normalized zero mean
Gaussian bivariate source, namely,(

X
Y

)
∼ N

((
0
0

)
,
(

1 ρ
ρ 1

))
. (22)

We establish achievability schemes and show that Gaussian test-channels PU|X and PV|Y
are optimal for vanishing SNR. Furthermore we show an elegant representation of the
problem through probabilistic Hermite polynomials which are defined by

Hn(x) , (−1)ne
x2
2

dn

dxn e−
x2
2 , n ∈ N0. (23)

We denote the Gaussian DSIB function with explicit dependency on ρ as R(Cu, Cv, ρ).

Proposition 7. Let Hn(·) be the nth order probabilistic Hermite polynomial, then the objective
function of (7) for the Gaussian setting is given by

I(U;V)=EUV

[
log

(
∞

∑
n=0

ρn

n!
E[Hn(X)|U]E[Hn(Y)|V]

)]
. (24)

This representation follows by considering I(U;V) = D(PUV||PU · PV) and expressing
PUV

PU·PV
using Mehler Kernel [66]. Mehler Kernel decomposition is a special case of a much

richer family of Lancaster distributions [67]. The proof of Proposition 7 is relegated to
Appendix G.

Now we give two lower bounds on R(Cu, Cv, ρ). Our first lower bound is estab-
lished by choosing PU|X and PV|Y to be additive Gaussian channels, satisfying the mutual
information constraints with equality.

Proposition 8. A lower bound on R(Cu,Cv, ρ) is given by

R(Cu, Cv, ρ)≥−1
2

log
(
1−ρ2

(
1−2−2Cu

)(
1−2−2Cv

))
. (25)

The proof of this bound is developed in Appendix H.
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Although it was shown in [26] that choosing the test-channel to be Gaussian is optimal
for the single-sided variant, it is not the case for its double-sided extension. We will
show this by examining a specific set of values for the rate constraints, (Cu, Cv) = (1, 1).
Furthermore, we choose the test channels PU|X and PV|Y to be deterministic quantizers.

Proposition 9. Let (Cu, Cv) = (1, 1), then

R(1, 1, ρ) ≥ 1− h2

(arccos ρ

π

)
. (26)

The proof of this bound is developed in Appendix I.
We compare the bounds from Propositions 8 and 9 with (Cu, Cv) = (1, 1) in Figure 16.

The most unexpected observation here is that the deterministic quantizers lower bound
outperform the Gaussian test-channels for high values of ρ. The crossing point of those
bounds is given by

ρcros =
e√

1 + e2
→
√

SNRcros =
ρcros√

1− ρ2
cros

= e. (27)

We proceed to present our upper bound on R(Cu, Cv, ρ). This bound is a combination
of the cutset bound and the single-sided Gaussian IB.

Proposition 10. An upper bound on (7) with Gaussian (X,Y) setting (22) is given by

R(Cu, Cv, ρ) ≤ min
{
−1

2
log(1− ρ2(1− 2−2Cu)),−1

2
log(1− ρ2(1− 2−2Cv))

}
. (28)

We compare the best lower and upper bounds from Propositions 8–10 in Figure 17.
We observe that the bounds become tighter as the constraint increases and in the low-SNR
regime.
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Figure 16. Comparison of the lower bounds from Propositions 8 and 9.

4.1. Low-SNR Regime

For ρ→ 0, the exact asymptotic behavior of the Gaussian (Proposition 8) and deter-
ministic (Proposition 9) test-channels, respectively, for Cu = Cv = 1 bit is given by:

lim
ρ→0
−1

2
log
(
1−ρ2(1−2−2Cu)(1−2−2Cv)

)
=

9 log e
32

ρ2+o(ρ2),

lim
ρ→0

1− h2

(arccos ρ

π

)
=

2 log e
π2 ρ2+o(ρ2).
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Hence, the Gaussian choice outperforms the second lower bound for vanishing SNR. The
following theorem establishes that Gaussian test-channels are optimal for low-SNR.
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Figure 17. Capacity bounds for various values of p and C = Cu = Cv = 1.

Theorem 2. For small ρ, the GDSIB function is given by:

R(Cu,Cv,ρ) =
ρ2 log e

2
(1− 2−2Cu)(1− 2−2Cv)+ o(ρ2). (29)

The lower bound follows from Proposition 8. The upper bound is established by
considering the kernel representation from Proposition 7 in the limit of vanishing ρ. The
detailed proof is given in Appendix J.

4.2. Optimality of Symbol-by-Symbol Quantization When X = Y

Consider an extreme scenario for which X = Y ∼ N (0, 1). Taking the encoders PU|X
and PV|X as a symbol-by-symbol deterministic quantizers satisfying:

H(U) = H(V) = min{Cu, Cv},

we achieve the optimum
I(U;V) = min{Cu, Cv}.

5. Alternating Maximization Algorithm

Consider the DSIB problem for DSBS with parameter p analyzed in Section 3. The
respective optimization problem involves simultaneous search of the maximum over the
sets {PU|X} and {PV|Y}. An alternating maximization, namely, fixing PU|X, then finding
the respective optimal PV|Y and vice versa, is sub-optimal in general and may result in
convergent to a saddle point. However, for the case p = 0 with symmetric bottleneck
constraints, Proposition 4 implies that such point exists only for the BSC and Z/S channels.
This motivates us to believe that performing an alternating maximization procedure on (9)
will not result in sub-optimal saddle point, but rather converge to the optimal solution also
for the general discrete (X,Y).

Thus, we propose an alternating maximization algorithm. The main idea is to fix
PV|Y and then compute P∗U|X that attains the inner term in (9). Then, using P∗U|X, we find
the optimal P∗V|Y that attains the inner term in (10). Then, we repeat the procedure in
alternating manner until convergence.

Note that inner terms of (9) and (10) are just the standard IB problem defined in (6).
For completeness, we state here the main result from [1] and adjust it for our problem.
Consider the respective Lagrangian of (6) given by:

L(PU|X, λ) = I(U;V) + λ(C− I(X;U)). (30)
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Lemma 4 (Theorem 4 of [1]). The optimal test-channel that maximizes (30) satisfies the equation:

PU|X(u|x) =
PU(u)
Z(x, β)

e−βD(PV|X=x‖PV|U=u), (31)

where β , 1/λ and PV|U is given via Bayes’ rule, as follows:

PV|U(v|u) =
1

PU(u)
∑
x
PV|X(v|x)PU|X(u|x)PX(x). (32)

In a very similar manner to the Blahut–Arimoto algorithm [18], the self-consistent
equations can be adapted into converging, alternating iterations over the convex sets
{PU|X} = ∆⊗n

n , {PU} = ∆n, and {PV|U} = ∆⊗n
n , as stated in the following lemma.

Lemma 5 (Theorem 5 of [1]). The self-consistent equations are satisfied simultaneously at the
minima of the functional:

F(PU|X,PU,PY|U) = I(U;X) + βE
[

D(PV|X‖PV|U)
]
, (33)

where the minimization is performed independently over the convex sets of {PU|X} = ∆⊗n
n ,

{PU} = ∆n, and {PV|U} = ∆⊗n
n . The minimization is performed by the converging alternation

iterations as described in Algorithm 1.

Algorithm 1: IB iterative algorithm IBAM(args)

Input: P(0)
U|X,PXY, β, ε

R(0) = 0
t← 0
while ∆R ≥ ε do

PU(u)← ∑x PX(x)P(t)
U|X(u|x)

PX|U ←
P
(t)
U|XPX

PU

PY|U(y|u)← ∑x PY|X(y|x)PX|U(x|u)

P
(t+1)
U|X (u|x)← PU(u) exp(−βD(PY|X=x‖PY|U=u))

∑u PU(u) exp(−βD(PY|X=x‖PY|U=u))

R(t+1) ← I(P(t+1)
U ,P(t+1)

Y|U )

∆R = |R(t+1) − R(t)|
t← t + 1

Output: P(t)
U|X(u|x)

Next, we propose a combined algorithm to solve the optimization problem from (7).
The main idea is to fix one of the test-channels, i.e., PV|Y, and then find the correspond-
ing optimal opposite test-channel, i.e., PU|X, using Algorithm 1. Then, we apply again
Algorithm 1 by switching roles, i.e., fixing the opposite test-channel, i.e., PU|X, and then
identifying the optimal PV|Y. We repeat this procedure until convergence of the objective
function I(U;V). We summarize the proposed composite method in Algorithm 2.

Remark 8. Note that every alternating step of the algorithm involves finding an optimal (β∗, η∗)
that corresponds to the respective problem constraints (Cu, Cv). We have chosen to implement this
exploration step using a bisection-type method. This may result that the actual pair (Cu, Cv) is
ε-far away from the desired constraint.
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Algorithm 2: DSIB iterative algorithm DSIBAM(args)

Input: P(0)
U|X,P(0)

V|Y,PXY, Cu, Cv, ε

R(0) = 0
s← 0
while ∆R ≥ ε do

PXV(x, v)← ∑y P
(s)
V|Y(v|y)PXY(x, y)

PU|X(β)← IBAM(P
(s)
U|X,PXV, β, ε)

β∗ ← arg minβ |I(PX,PU|X(β))− Cu|
P
(s+1)
U|X ← PU|X(β∗)

PYU(y, u)← ∑x P
(s+1)
U|X (u|x)PXY(x, y)

PV|Y(η)← IBAM(P
(s)
V|Y,PYU, η, ε)

η∗ ← arg minη |I(PY,PV|Y(η))− Cv|
P
(s+1)
V|Y ← PV|Y(η

∗)

PUV(u, v) = ∑y P
(s+1)
V|Y (v, y)PYU(y, u)

R(s+1) ← I(PUV)

∆R← |R(s+1) − R(s)|
s← s + 1

C(s)
u ← I(PX,P(s)

U|X)

C(s)
v ← I(PY,P(s)

V|Y)

Output: P(s)
U|X,P(s)

V|Y, R(s), C(s)
u , C(s)

v

6. Numerical Results

In this section, we focus on the DSBS setting of Section 3. In the first part of this
section, we will show using a brute-force method the existence of a sharp, phase-transition
phenomena in the optimal test-channels PU|X and PV|Y vs. DSBS parameter p. In the second
part of this section, we will evaluate the alternating maximization algorithm proposed in
Section 5; then, we compare its performance to the brute-force method.

6.1. Exhaustive Search

In this set of simulations, we again fix the transition matrix from Y to V characterized
by the parameters:

T =

(
a b

1− a 1− b

)
, (34)

chosen such that I(Y;V) = Cv. This choice defines a path b = f (a) in the (a, b) plain. Then,
for every such T we optimize I(U;V) for different values of the DSBS parameter p. The
results for a specific choice of (Cu, Cv) = (0.4, 0.6) vs. a for different values of p are plotted
in Figure 18. Note that the region of a corresponds to the continuous conversion from a
Z channel (a = 0) to a BSC (a = amax). We observe here a very sharp transition from the
optimality of Z-S channels to BSC channels configuration for a small change in p. This kind
of behavior continues to hold with a different choice of (Cu = 0.1, Cv = 0.9), as can be seen
in Figure 19.
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Figure 18. Maximal I(U;V) for fixed values (Cu, Cv) = (0.4, 0.6) and different values of p.
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Figure 19. Maximal I(U;V) for fixed values (Cu, Cv) = (0.1, 0.9) and different values of p.
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Next, we would like to emphasize this sharp phase transition phenomena by plotting
the optimal a that achieves the maximal I(U;V) vs the DSBS parameter p. The results for
various combinations of Cu and Cv are presented in Figures 20 and 21. We observe that the
curves are convex for p ∈ [0, pth) and constant for p > pth with a = absc. Furthermore, the
derivative of a(p) for p→ pth tends to ∞.
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Figure 20. Optimal value of a for various values of Cu and Cv.
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Figure 21. Optimal value of a for various values of Cu and Cv = 0.9.

One may further claim that there is no sharp transition to the BSC test-channels
PU|X and PV|Y as p grows away from zero, but rather only approaches BSC. To convince
the reader that the optimal test channels are exactly BSC, we performed an alternating
maximization experiment. We fixed p > 0, Cu and Cv. Then we have chosen PV|Y as an
almost BSC channel satisfying I(Y;V) ≤ Cv and found the channel PX|U that maximizes
I(U;V) subject to I(X;U) ≤ Cu. Then, we fixed the channel PX|U and found the PY|V that
maximizes I(U;V) subject to I(Y;V) ≤ Cv. We have repeated this alternating maximization
procedure until it converges. The transition matrices were parameterized as follows:

TY|V =

(
q0 q1

1− q0 1− q1

)
, TX|U =

(
p0 p1

1− p0 1− p1

)
. (35)

The results for different values of p, Cu, and Cv are shown in Figures 22–24. We
observe that p0 and q0 rapidly converge to their respective BSC values satisfying the
mutual information constraints. Note that the last procedure is still an exhaustive search,
but it is performed in alternating fashion between the sets {PU|X} and {PV|Y}.
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Figure 23. Alternating maximization with exhaustive search for various p, Cu, Cv.
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Figure 24. Alternating maximization with exhaustive search for various p, Cu, Cv.

6.2. Alternating Maximization

In this section, we will evaluate the algorithm proposed in Section 5. We focus on the
DSBS setting of Section 3 with various values of problem parameters.
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First, we explore the convergence behavior of the proposed algorithm. Figure 25
shows the objective function I(U;V) on every iteration step for representative fixed-channel
transition parameters p and the constraints Cu and Cv. We observe a slow convergence
to a final value for p = 0 and Cu = Cv = 0.2, but once the constraints and the transition
probability are increased, the algorithm converges much more rapidly. The non-monotonic
behavior in some regimes is justified with the help of Remark 8. In Figure 26, we see the
respective test-channel probabilities α0 + α1, 1− α0, β0 + β1, and 1− β1. First, note that if
α0 + α1 = 1, then PX|U is a BSC. Similarly, if β0 + β1 = 1, then PY|V is a BSC. Second, if
1− α0 = 1, then PX|U is a Z-channel. Similarly, if 1− β1 = 1, then PY|V is an S-channel.
We observe that for p = 0, the test-channels PX|U and PY|V converge to Z- and S-channels,
respectively. As for all other settings, the test-channels converge to BSC channels.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
5.06
5.08

5.1
5.12
5.14
5.16
5.18

5.2
5.22
5.24

5.26
5.28

5.3
5.32
5.34

·10−2

Iteration

I(
U

;V
)

(a) p = 0, Cu = Cv = 0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.53

0.53

0.53

0.53

0.53

0.53

0.54

0.54

0.54

Iteration

I(
U

;V
)

(b) p = 0, Cu = Cv = 0.7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

0.18

Iteration

I(
U

;V
)

(c) p = 0.1, Cu = Cv = 0.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47
0.47

Iteration

I(
U

;V
)

(d) p = 0.001, Cu = 0.9 and Cv = 0.5
Figure 25. Convergence of I(U;V) for various values of p, Cu and Cv.

Finally, we compare the outcome of Algorithm 2 to the optimal solution achieved by
the brute-force method, namely, evaluating (12) for every PU|X and PV|Y that satisfy the
problem constraints. The results for various values of channel parameters are shown in
Figure 27. We observe that the proposed algorithm achieves the optimum for any DSBS
parameter p and some representative constraints Cu and Cv.
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Figure 26. Convergence of I(U;V) p with: (a) Cu = Cv = 0.2, p = 0; (b) Cu = Cv = 0.7, p = 0; (c)
Cu = Cv = 0.5, p = 0.1; (d) Cu = 0.65, Cv = 0.4, p = 0.1.
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Figure 27. Comparison of the proposed alternating maximization algorithm and the brute-force
search method for various problem parameters.

7. Concluding Remarks

In this paper, we have considered the Double-Sided Information Bottleneck prob-
lem. Cardinality bounds on the representation’s alphabets were obtained for an arbitrary
discrete bivariate source. When X and Y are binary, we have shown that taking binary
auxiliary random variables is optimal. For DSBS, we have shown that BSC test-channels
are optimal when p → 0.5. Furthermore, numerical simulations for arbitrary p indi-
cate that Z -and S-channels are optimal for p = 0. As for the Gaussian bivariate source,
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representation of I(U;V) utilizing Hermite polynomials was given. In addition, the opti-
mality of the Gaussian test-channels was demonstrated for vanishing SNR. Moreover, we
have constructed a lower bound attained by deterministic quantizers that outperforms
the jointly Gaussian choice at high SNR. Note that the solution for the n-letter problem
max 1

n I(U;V) for U→ Xn → Yn → V under constraints I(U;Xn) ≤ nCu and I(V;Yn) ≤ nCv
does not tensorize in general. For Xn = Yn ∼ Ber⊗n(0.5), we can easily achieve the cut-
set bound I(U;V)/n = min{Cu, Cv}. In addition, if time-sharing is allowed, the results
change drastically.

Finally, we have proposed an alternating maximization algorithm based on the stan-
dard IB [1]. For the DSBS, it was shown that the algorithm converges to the global
optimal solution.
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Appendix A. Proof of Proposition 2

Before proceeding to proof Proposition 2, we need the following auxiliary results.

Lemma A1. Let PY|X be an arbitrary binary-input, ternary-output channel, parameterized using
the following transition matrix:

T ,

 a b
c d

1− a− c 1− b− d

. (A1)

Consider the function p 7→ φ(p, λ) = h(Tp)− λhb(p) defined on [0, 1]. This function has the
following properties:

1. If φ(p, λ) is linear on a sub-interval of [0, 1], then it is linear for every p ∈ [0, 1].
2. Otherwise, it is strictly convex over [0, 1] or there are points pl and pu such that 0 < pl <

pu < 1 where

φ(p, λ) =


strictly convex 0 < p < pl = I1,
strictly concave pl < p < pu = I2,
strictly convex pu < p < 1 = I3.

(A2)

We postpone the proof of this lemma to Appendix K.

Lemma A2. The convex envelope of φ(·) at any point q ∈ [0, 1] can be obtained as a convex
combination of only points in I1 and I3.

We postpone the proof of this lemma to Appendix L and proceed to proof Proposition 2.
Note that if FT(x) is strictly convex in [0, hb(q)], then by the paragraph following (Theorem
2.3 of [17]) |U | = 2, we are done.

From now on, we consider the case where FT(x) is not strictly convex. Then, there is
an interval L ⊂ [0, h(q)] and a ∈ R+ such that

FT(x) = a + λL · x ∀x ∈ L. (A3)
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Let t0 and t1 represent the columns of T corresponding to X = 0 and X = 1, respectively,
Moreover let q , P(X = 0) and p , (p, p̄)T be the probability vector of an arbitrary binary
random variable, where p̄ , 1− p.

Assume x1, x2 ∈ L and x1 6= x2. Then, there must be {α1i, p1i}i=1,2,3 and {α2i, p2i}i=1,2,3
such that

3

∑
i=1

α1i p1i = q,
3

∑
i=1

α1ihb(p1i) = x1,
3

∑
i=1

α1ih(Tp1i) = a + λLx1, (A4)

3

∑
i=1

α2i p2i = q,
3

∑
i=1

α2ihb(p2i) = x2,
3

∑
i=1

α2ih(Tp2i) = a + λLx2. (A5)

Lemma A3. The set {p11, p12, p13, p21, p22, p23} must contain at least three distinct points.

We postpone the proof of this lemma to Appendix M.
Consider the function p 7→ φ(p) = φ(p, λL) = h(Tp)− λLhb(p) defined on [0, 1]. We

have that
3

∑
i=1

α1iφ(p1i) =
3

∑
i=1

α2iφ(p2i) = a. (A6)

In addition, if we define ψ(·) to be the lower convex envelope of φ(·), then ψ(q) = a. Thus,
the lower convex envelope of φ(·) at q is attained by two linear combinations.

By Lemma Lemma A3, the set {p11, p12, p13, p21, p22, p23}must contain at least three
distinct points, say {p11, p21, p22}. Due to Lemma A2, they are all in I1 ∪ I3. Furthermore,
by the pigeonhole principle, we must have that one of the intervals contains at least two
points. Assume WLOG that {p11, p21} ∈ I1. For any γ ∈ [0, 1], let S = γ̄α11 + γα21 and
consider the following set of weights/probabilities:{(

S,
γ̄α11

S
· p11 +

γα21

S
· p21

)
, (γ̄α12, p12), (γ̄α13, p13), (γα22, p22), (γα23, p23)

}
. (A7)

Note that
S + γ̄α12 + γ̄α13 + γα22 + γα23 = 1, (A8)

and
γ̄α11 · p11 + γα21 · p21γ̄α12 · p12 + γ̄α13, p13 + γα22 · p22 + γα23 · p23 = q, (A9)

but since {p11, p21} ∈ I1

S · φ
(

γ̄α11

S
· p11 +

γα21

S
· p21

)
+ γ̄α12φ(p12) + γ̄α13φ(p13) + γα22φ(p22) + γα23φ(p23) (A10)

<S ·
(

γ̄α11

S
·φ(p11)+

γα21

S
·φ(p21)

)
+ γ̄α12φ(p12)+ γ̄α13φ(p13)+γα22φ(p22)+γα23φ(p23) = a, (A11)

thus, it attains a smaller value than a, provided that φ is strictly convex on I1. This
contradicts our assumption that the convex envelope at q equals a, and thus φ(·) must
contain a linear segment in I1.

By Lemma A1, this can happen only if p is linear for every p ∈ [0, 1]. In particular:

h(Tp)− λLhb(p) = φ(p) = (1− p)φ(0) + pφ(1) = (1− p)h(t0) + ph(t1). (A12)

Note that for any choice of PX|U=u

H(Y|U = u) = h(Tpu) (A13)

= φ(pu) + λLhb(pu) (A14)

= (1− pu)h(t0) + puh(t1) + λLhb(pu). (A15)
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Taking the expectation we obtain:

H(Y|U) = (1− q)h(t0) + qh(t1) + λLx. (A16)

This implies that
FT(x) = (1− q)h(t0) + qh(t1) + λLx, (A17)

and this is attained by any choice of PU|X satisfying H(X|U) = x. In particular the choice
U = X⊕ Z, where Z ∼ Ber(δ) is statistically independent of X and is chosen such that
H(X|U) = x, attains FT(x). Thus, |U | = 2 suffices even if FT(x) is not strictly convex.

Appendix B. Proof of Lemma 3

Let PU|X and PV|Y be the test-channels from X to U and from Y to V, respectively. The
joint probability function of U and V can be expressed via Bayes’ rule and the Markov chain
condition U→ X→ Y → V as:

PUV(u, v) = 4 · PU(u)PV(v)∑
x,y

PX|U(x|u)PXY(x, y)PY|V(y|v). (A18)

Since I(U;V) = E[log(PUV/PU × PV)], we define K(u, v, p) as the ratio between the
joint distribution of U and V relative to the respective product measure. Note that:

K(u, v, p) ,
PUV(u, v)

PU(u)PV(v)
(A19)

= 4 ∑
x,y

PX|U(x|u)PXY(x, y)PY|V(y|v) (A20)

= 2(PX|U(0|u) · p̄ · PY|V(0|u) + PX|U(1|u) · p · PY|V(0|u)) (A21)

+ 2(PX|U(0|u) · p · PY|V(1|u) + PX|U(1|u) · p̄ · PY|V(1|u)). (A22)

Denoting αu , PX|U(1|u) and βv , PY|V(0|v), we obtain:

K(u, v, p) = 2(ᾱu p̄βv + αu pβv + ᾱu pβ̄v + αu p̄β̄v) = 2αu ∗ βv ∗ p. (A23)

The last expression can also be represented as follows:

2αu ∗ βv ∗ p = 2(1− p)(αu + βv − 2αuβv) + 2p(1− αu − βv + 2αuβv) (A24)

= 2αu + 2βv − 4αuβv + 2p(1− 2αu − 2βv + 4αuβv) (A25)

= 1− (1− 2p)(1− 2αu − 2βv + 4αuβv) (A26)

= 1− (1− 2p)(1− 2αu)(1− 2βv). (A27)

Thus,

I(U;V) = ∑
u,v

PUV(u, v) log
PUV(u, v)

PU(u)PV(v)
(A28)

= ∑
u,v

PU(u)PV(v)K(u, v, p) log K(u, v, p). (A29)

Furthermore, note that since |(1− 2p)(1− 2αu)(1− 2βv)| < 1, we can utilize Taylor’s
expansion of log(1− x) to obtain:

log K(u, v, p) = −
∞

∑
n=1

(1− 2p)n(1− 2αu)n(1− 2βv)n

n
, (A30)



Entropy 2022, 24, 1321 28 of 37

and

K(u, v, p) log K(u, v, p) = −
∞

∑
n=1

(1− 2p)n(1− 2αu)n(1− 2βv)n

n

+
∞

∑
n=1

(1− 2p)n+1(1− 2αu)n+1(1− 2βv)n+1

n
. (A31)

Therefore:

I(U;V) = −
∞

∑
n=1

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n
(A32)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E[(1− 2βV)
n+1]

n
(A33)

(a)
= −

∞

∑
n=2

(1− 2p)nE[(1− 2αU)
n]E[(1− 2βV)

n]

n
(A34)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E[(1− 2βV)
n+1]

n
(A35)

= −
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αU)

n+1]E[(1− 2βV)
n+1]

n + 1
(A36)

+
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αV)

n+1]E[(1− 2βV)
n+1]

n
(A37)

=
∞

∑
n=1

(1− 2p)n+1E
[
(1− 2αU)

n+1
]
E
[
(1− 2βV)

n+1
]
· 1

n(n + 1)
, (A38)

where (a) follows since E[αU] = E[βV] =
1
2 . This completes the proof.

Appendix C. Auxiliary Concavity Lemma

As a preliminary step to proving Theorem 1, we will need the following auxiliary
lemma.

Lemma A4. The function f (x) = (1− 2h−1
b (x))2 is concave.

Proof. Denoting g(x) , h−1
b (x), we have f (x) = (1− 2g(x))2. Since f (x) is twice differen-

tiable, it is sufficient to show that f ′(x) is decreasing. The first derivative is given by:

f ′(x) = −4(1− 2g(x))g′(x). (A39)

Since

hb(x) = −x log x− (1− x) log(1− x), (A40)

h′b(x) = log
1− x

x
, (A41)

h′′b (x) = − 1
(1− x) ln 2

− 1
x ln 2

= − 1
x(1− x) ln 2

, (A42)

utilizing the inverse function derivative property, we obtain:

g(x) = h−1
b (x), (A43)

g′(x) =
1

h′(g(x))
=

1

log 1−g(x)
g(x)

. (A44)
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In addition, the second order derivative is given by:

g′′(x) =
log e

log3 1−g(x)
g(x)

g(x)
1− g(x)

1
(g(x))2 (A45)

=
log e

log3 1−g(x)
g(x)

1
(1− g(x))g(x)

(A46)

=
(g′(x))3

ln 2g(x)(1− g(x))
. (A47)

Define

r(t) ,
−4(1− 2t)

log 1−t
t

. (A48)

Note that f ′(x) = r(g(x)). Since g(x) is increasing, in order to show that f ′(x)
decreasing, it suffices to show that r(t) decreasing. The first order derivative of r(t) is
given by:

r′(t) =
8

log2 1−t
t

1
t(1− t)

(
t(1− t) log

1− t
t
− 1− 2t

ln 4

)
.

Define α , 1− 2t such that t = 1
2 (1− α). Note that α ∈ [0, 1]. We obtain:

r′(t) =
32

log2 1+α
1−α

1
1− α2

(
1
4
(1− α2) log

1 + α

1− α
− α

ln 4

)
.

Now, making use of the expansion log(1 + x) = ∑∞
k=1(−1)k+1 xk

k , we have:

log
1+α

1−α
=

∞

∑
k=1

(−1)k+1 αk

k
−

∞

∑
k=1

(−1)k+1 (−α)k

k
= 2 ∑

k odd

αk

k
.

Thus,

1
4
(1− α2) log

1 + α

1− α
− α

ln 4

=
1
2 ∑

k odd

αk

k
− 1

2 ∑
k odd

αk+2

k
− α

ln 4

= α

(
1
2
− 1

ln 4

)
+

1
2 ∑

k odd
k≥3

αk
(

1
k
− 1

k− 2

)
(a)
< α

(
1
2
− 1

ln e2

)
− ∑

k odd
k≥3

αk

k(k− 2)
< 0,

where (a) follows since α > 0. Thus, r′(t) < 0 and f (x) is concave.

Appendix D. Proof of Theorem 1

Plugging p← 1
2 − ε (ε , 1

2 − p) in (14), we obtain:

K(u, v, ε) = 1 + 2ε(1− 2αu)(1− 2βv). (A49)

Now, we rewrite I(U;V) with explicit dependency on ε as:

I(ε) = ∑
u,v

PU(u)PV(v)K(u, v, ε) log K(u, v, ε). (A50)
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We would like to expand I(ε) with Taylor series around ε = 0. Note that I(0) = 0 =
I′(ε)|ε=0. Furthermore, the second derivative is given by:

I′′(ε)|ε=0 = 4 log e ·
(

∑
u

PU(u)(1− 2αu)
2
)(

∑
v

PV(v)(1− 2βv)
2
)

.

Hence,

I(ε) = 2ε2 log e ·
(

∑
u

PU(u)(1− 2αu)
2
)(

∑
v

PV(v)(1− 2βv)
2
)
+ o(ε2).

Now, note that

αu =

{
h−1

2 (H(X|U = u)), αu ≤ 1
2

1− h−1
2 (H(X|U = u)), αu > 1

2
(A51)

with similar relation for βv. Therefore,

I(ε) =
2ε2

ln 2
·Eu

[
(1− 2h−1

2 (H(X|U = u)))2
]
·Ev

[
(1− 2h−1

2 (H(Y|V = v)))2
]
+ o(ε2)

≤ 2ε2 log e · (1− 2h−1
2 (H(X|U)))2(1− 2h−1

2 (H(Y|V)))2 + o(ε2)

≤ 2ε2 log e · (1− 2h−1
2 (1− Cx))

2(1− 2h−1
2 (1− Cy))

2 + o(ε2),

where the first inequality follows since the function f : x 7→ (1− 2h−1
2 (x))2 is concave by

Lemma A4 and applying Jensen’s inequality, and the second inequality follows from rate
constraints.

Appendix E. Proof of Proposition 4

Suppose that the optimal test-channel PV|X is given by the following transition matrix:

TV|X =

(
a b

1− a 1− b

)
. (A52)

Assume in contradiction that the opposite optimal test-channel PU|X is symmetric to
PV|X and is given by:

TU|X =

(
1− b 1− a

b a

)
. (A53)

Applying Bayes’ rule on (A53), we obtain:

TX|U =

(
1− α0 1− α1

α0 α1

)
=

(
b̄

ā+b̄
b

a+b
ā

ā+b̄
a

a+b

)
. (A54)

It was shown in (Section IV.D of [17]) that for fixed PV|X given by (A52), the optimal
PX|U must satisfy the following equation:

(a− b)(hb(α1)− hb(α0))(h′b(α̂0)− h′b(α̂1)) + (h′b(α1)− h′b(α0))(hb(α̂1)− hb(α̂0))

+ (a− b)(α1 − α0)(h′b(α0)h′b(α̂1)− h′b(α1)h′b(α̂0)) = 0, (A55)

where α̂0 , aα0 + bᾱ0 and α̂1 , aα1 + bᾱ1. Plugging α0 and α1 from (A54) in (A55) results
in a contradiction, thus establishing the proof of Proposition 4.
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Appendix F. Proof of Proposition 6

By Lemma 3, the objective function of (7) for a DSBS setting, denoted here by I(p), is
given by:

I(p) = EPU×PV
[K(U,V, p) log K(U,V, p)], (A56)

where K(u, v, p) can be expressed as:

K(u, v, p) = 1 + (1− 2p)(1− 2αu ∗ βv) = 1 + (1− 2p)(1− 2αu)(1− 2βv). (A57)

Since log(1 + x) ≤ x, we have the following upper bound on I(p):

I(p) = ∑
u,v

PU(u)PV(v)K(u, v, p) log K(u, v, p) (A58)

≤∑
u,v

PU(u)PV(v)(1 + (1− 2p)(1− 2αu)(1− 2βv))(1− 2p)(1− 2αu)(1− 2βv) (A59)

= (1− 2p)(1− 2 ∑
u

PU(u)αu)(1− 2 ∑
v

PV(v)βv) (A60)

+ (1− 2p)2 ∑
u

PU(u)(1− 2αu)
2 ∑

v
PV(v)(1− 2βv)

2 (A61)

= (1− 2p)(1− 2 ∑
u

PU(u)P(X = 1|U = u))(1− 2 ∑
v

PV(v)P(Y = 1|V = v)) (A62)

+ (1−2p)2 ∑
u

PU(u)(1−2P(X = 1|U = u))2 ∑
v

PV(v)(1−2P(Y = 1|V = v))2

= (1− 2p)(1− 2P(X = 1))(1− 2P(Y = 1)) (A63)

+ (1−2p)2 ∑
u

PU(u)(1−2h−1
2 (H(X|U = u)))2 ∑

v
PV(v)(1−2h−1

2 (H(Y = |V = v)))2

(a)
≤ (1− 2p)2(1− 2h−1

2 (H(X|U)))2(1− 2h−1
2 (H(Y = |V)))2 (A64)

(b)
≤ (1− 2p)2(1− 2h−1

2 (1− Cx)
2(1− 2h−1

2 (1− Cy)
2, (A65)

where the inequality in (a) follows from Lemma A4 and inequality in (b) follows from the
problem constraints.

Appendix G. Proof of Proposition 7

We assume U and V are continuous RVs. The proof for the discrete case is identical.
The joint density fUV(u, v) can be expressed with explicit dependency on ρ as follows:

f(u,v;ρ), fU(u) fV(v)
∫∫

R2
fX|U(x|u)M(x, y; ρ) fY|V(y|v)dxdy,

where M(x, y; ρ) = ∑∞
n=0

ρn

n! Hn(x)Hn(y) [66]. Similarly, I(U;V) can also be written with
explicit dependency on ρ

I(ρ) , Iρ(U;V) =
∫ ∫

f (u, v; ρ) log
f (u, v; ρ)

fU(u) fV(v)
dudv.

Appendix H. Proof of Proposition 8

Let (U,X,Y,V) be jointly Gaussian Random variables, such that

X = σUXU+
√

1− σ2
UXZu, Y = σYVV+

√
1− σ2

YVZv,
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where Zu ∼ N (0, 1), Zv ∼ N (0, 1), Zu ⊥ U, Zv ⊥ V. Due to Proposition 7, the mutual
information for jointly Gaussian (U,X,Y,V) is given by

I(U;V) = EUV

[
log

(
∞

∑
n=0

ρn

n!
E[Hn(X)|U]E[Hn(Y)|V]

)]
(a)
= EUV

[
log

(
∞

∑
n=0

(ρσUXσYV)
n

n!
Hn(U)Hn(V)

)]

(b)
= EUV

log

 1√
1− ρ2σ2

UXσ2
YV

exp

(
2ρσUXσYVUV− ρ2σ2

UXσ2
YV(U

2 + V2)

2(1− ρ2σ2
UXσ2

YV)

)
= −1

2
log(1−ρ2σ2

UXσ2
YV) +

ρσUXσYV
1−ρ2σ2

UXσ2
YV

E[UV]−
ρ2σ2

UXσ2
YV

2(1−ρ2σ2
UXσ2

YV)
(E
[
U2
]
+E

[
V2
]
)

= −1
2

log(1− ρ2σ2
UXσ2

YV),

where (a) and (b) follow from the properties of Mehler Kernel [66].
By the Mutual Information constraints we have:

σ2
UX = 1− e−2Cu σ2

YV = 1− e−2Cv . (A66)

Hence,

I(U;V) = −1
2

log(1− ρ2(1− e−2Cu)(1− e−2Cv)). (A67)

Appendix I. Proof of Proposition 9

We choose U and V to be deterministic functions of X and Y, respectively, i.e., U =
sign(X) and V = sign(Y). In such case, the rate constraints are met with equality, namely,
I(U;X) = 1 = I(Y;V). We proceed to evaluate the achievable rate:

I(U;V) = 1− P(U = 0)h2(P(V = 1|U = 0))− P(U = 1)h2(P(V = 0|U = 1))
(a)
= 1− h2(P(U 6= V)),

where equality in (a) follows since P(V = 1|U = 0) = P(V = 0|U = 1) by symmetry. We
therefore obtain the following formula for the “error probability”:

P(V 6= U) = 1− P(X < 0,Y < 0)− P(X > 0,Y > 0)
(a)
= 1− 2P(X < 0,Y < 0),

where (a) also follows from symmetry. Utilizing Sheppard’s Formula (Chapter 5, p.107
of [68]), we have 1− 2P(X < 0,Y < 0) = arccos ρ

π . This completes the proof of the proposi-
tion.

Appendix J. Proof of Theorem 2

We would like to approximate I(ρ) in the limit ρ → 0 using a Taylor series up to a
second order in ρ. As a first step, we evaluate the first two derivatives of f (u, v; ρ) at ρ = 0.
Note that M(x, y; 0) = 1 and

dM
dρ

∣∣
ρ=0 = xy,

d2M
dρ2

∣∣
ρ=0 = (x2 − 1)(y2 − 1). (A68)

Thus, f (u, v; 0) = fU(u) fV(v),

d f
dρ

∣∣∣∣
ρ=0

= fU(u) fV(v)E[X|U = u]E[Y|V = v],
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and

d2 f
dρ2

∣∣
ρ=0 = fU(u) fV(v)

∫ ∞

−∞

∫ ∞

−∞
fX|U(x|u)d2M(x, y; ρ)

dρ2

∣∣
ρ=0 fY|V(y|v)dxdy (A69)

= fU(u) fV(v)
(∫ ∞

−∞
(x2 − 1) fX|U(x|u)dx

)(∫ ∞

−∞
(y2 − 1) fY|V(y|v)dy

)
(A70)

= fU(u) fV(v)
(
E[X2|U = u]− 1

)(
E[Y2|V = v]− 1

)
. (A71)

Expanding I(ρ) in Taylor series around ρ = 0 gives us I(0) = 0 = dI(ρ)
dρ

∣∣
ρ=0 and

d2 I(ρ)
dρ2

∣∣
ρ=0 = log e ·E

[
(E[X|U])2

]
E
[
(E[Y|V])2

]
.

Thus,

I(ρ) =
ρ2 log e

2
E
[
(E[X|U])2

]
E
[
(E[Y|V])2

]
+ o(ρ2). (A72)

Note that E[X] = E[E[X|U]] and

1 = E[X2] = E
[
E[X2|U]

]
= E[var[X|U]] +E

[
(E[X|U])2

]
. (A73)

In addition, by (Corollary to Theorem 8.6.6 of [69]), E[var[X|U]] ≥ 1
2πe e2h(X|U).

Moreover, from MI constraint, we have

I(X;U) = h(X)− h(X|U) = 1
2

log(2πe)− h(X|U) ≤ Cu,

and therefore h(X|U) ≥ log(2πe)− Cu. Thus, we obtain:

− Cu ≤
1
2

log(E[var[X|U]])→ E[var[X|U]] ≥ 2−2Cu . (A74)

Combining (A73) and (A74), we obtain E
[
(E[X|U])2] ≤ 1− 2−2Cu .

In a very similar method, one can show that E
[
(E[Y|V])2] ≤ 1− 2−2Cv .

Thus, for ρ→ 0

I(ρ) ≤ ρ2 log e
2

(1− 2−2Cu)(1− 2−2Cv) + o(ρ2). (A75)

Appendix K. Proof of Lemma A1

The function φ(p, λ) is a twice differentiable continuous function with respective
second derivative given by

∂2φ(p, λ)

∂p2 = φpp(p, λ)=− (a−b)2

ap + bp̄
− (c−d)2

cp + dp̄
− (a−b +c−d)2

1−(a+c)p−(b+d) p̄
+

λ

pp̄
. (A76)

The former can also be written as a proper rational function [70], i.e., φpp(p, λ) = N(p)
D(p) ,

where

N(p) = λ(ap + bp̄)(cp + dp̄)(1−(a + c)p−(b + d) p̄)−(a−b)2(cp + dp̄)(1−(a + c)p

−(b + d) p̄)pp̄−(c−d)2(ap + bp̄)(1−(a + c)p−(b + d) p̄)pp̄

−(a−b + c−d)2(ap + bp̄)(cp + dp̄)pp̄, (A77)

and
D(p) = pp̄(ap + bp̄)(cp + dp̄)(1− (a + c)p− (b + d) p̄). (A78)
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Note that φpp(p, λ) equals +∞ for p ∈ {0, 1} and hence is positive for this set of points.

1. Suppose φ(p, λ) is linear over some interval I ⊂ [a, b]. In such case, its second
derivative must be zero over this interval, which implies that N(p) is zero over this
interval. Since N(p) is a degree 3 polynomial, it can be zero over some interval if and
only if it is zero everywhere. Thus, if φ(p, λ) is linear over some interval I , then it is
non-linear for every p ∈ [0, 1].

2. For p ∈ (0, 1), D(p) > 0 and N(p) is a degree 3 polynomial in p. Since N(0+) > 0 and
N(1−) > 0, this polynomial has no sign changes or has exactly two sign changes in
(0, 1). Therefore, either φ(p, λ) is convex or there are two points p1 and p2, 0 < p1 <
p2 < 1, such that φ(p, λ) is convex in p ∈ [0, p1] ∪ [p2, 1] and concave in p ∈ [p1, p2].

Appendix L. Proof of Lemma A2

Let I2 = [c, d] ⊂ [0, 1] and assume in contradiction that {αi, pi}i=1,2,3 attains the lower
convex envelope at point q, and that p2 ∈ I2. By assumption, we have that

α1 p1 + α2 p2 + α3 p3 = q. (A79)

We can write p2 = γ̄c + γd for some γ ∈ (0, 1) and still

α1 p1 + α2γ̄c + α2γd + α3 p3 = q. (A80)

However, due to concavity of φ(·) in I2, we must have

α1φ(p1) + α2γ̄φ(c) + α2γφ(d) + α3φ(p3) ≤ α1φ(p1) + α2φ(γ̄c + γd) + α3φ(p3)

= α1φ(p1) + α2φ(p2) + α3φ(p3). (A81)

This implies that there is a linear combination of point from I1 ∪ I3 that attains a lower
value than φ(q), contradicting the assumption that φ(q) is the lower convex envelope at
point q. Since p2 was arbitrary, the lemma holds.

Appendix M. Proof of Lemma A3

Assume in contradiction that there are no distinct points, i.e., it has p11 = p12 = p13 =
p21 = p22 = p23 = p, then p = q and x1 = x2 ,which contradicts the initial assumption
that x1 6= x2. Assume WOLG that p11 = p12 = p13 = p21 = p22 = p but p23 6= p. Since
p11 = p12 = p13 = p implies p = q, then p23 must be q as well in contradiction to the initial
assumption.

Consider the following cases:

• p11 = p12 = p13 = p21 = p1, p22 = p23 = p2 , p1 6= p2: This implies p1 = q.
Furthermore,

α21q + α22 p2 + (1− α21 − α22)p2 = q→ (1− α21)p2 = (1− α21)q, (A82)

which holds only if p2 = q in contradiction to our initial assumption.
• p11 = p12 = p21 = p22 = p1, p13 = p23 = p2 , p1 6= p2: This implies

(α11 + α12)p1 + (1− α21 − α22)p2 = q = (α21 + α22)p1 + (1− α21 − α22)p2, (A83)

which holds only if α11 + α12 = α21 + α22. In such case

x1 = (α11 + α12)h(p1) + (1− α11 − α12)h(p2)

= (α21 + α22)h(p1) + (1− α21 − α22)h(p2) = x2, (A84)

in contradiction to the assumption x1 6= x2.

Thus, the lemma holds.
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