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Abstract—The information bottleneck (IB) problem of jointly
stationary Gaussian sources is considered. A water-filling solution
for the IB rate is given in terms of its SNR spectrum and whose
rate is attained via frequency domain test-channel realization. A
time-domain realization of the IB rate, based on linear prediction,
is also proposed, which lends itself to an efficient implementation
of the corresponding remote source-coding problem. A compound
version of the problem is addressed, in which the joint distribu-
tion of the source is not precisely specified but rather in terms
of a lower bound on the guaranteed mutual information. It is
proved that a white SNR spectrum is optimal for this setting.

I. INTRODUCTION

It is by now well established that the information bottleneck
(IB) method [1] plays a central role in information theory,
machine learning, and various other fields. In its basic form,
it introduced an alternative conceptual approach to the problem
of lossy compression. In classic rate-distortion problems [2], a
distortion measure must be provided in order to calculate the
respective rate-distortion function and characterize the single-
letter compression strategy. However, in practice, determining
the distortion measure may be a challenging problem on its
own. One motivating example is speech compression, in which
it is difficult to identify the prominent features of the vocal
signal that affect the quality of the reconstructed audio. Also,
one may argue that the transcript of the speech signal has more
information than the features of the analog waveform. The IB
framework tackles those issues by introducing an additional,
informative variable to the problem that acts as the appropriate
labeling of the data to be compressed. Thus, IB provides a
natural fidelity measure in cases where such cannot be defined
or does not exist; an essential feature for modern source
coding problems. We also mention that, as is well known,
the IB is the information-theoretic solution to a remote source
coding problem [3], [4], when the log-loss is chosen as the
distortion measure. Nonetheless, the setting behind remote-
source coding is fundamentally different from IB, despite the
formal similarity between the resulting optimization problems.

In general, the IB function is a non-convex optimization
problem and does not have a closed-form solution. However,
it can be analytically solved in some canonical scenarios,
mainly the doubly symmetric binary source (DSBS) in [5],

Source
PXY

Encoder Decoder
Xn Yn M

Zn

Fig. 1: Block diagram of Remote Source Coding.

and a jointly Gaussian vector source in [6]. In all other
cases, as proposed in [1], a Blahut-Arimoto type alternating
minimization algorithm [7], [8], is typically used for obtaining
a solution. This algorithm was shown to converge to a local
stationary point but has no global convergence guarantees.

This work addresses the bivariate Gaussian setting and
replaces the finite length vectors formulation with that of
a stationary Gaussian random process. Considering random
processes instead of finite length vectors gives the problem
a more natural and practical flavor and is motivated by the
communication and signal-processing problems, in which the
receiver sequentially processes the samples. It has also rooted
in remote source coding and signal-denoising applications.
This wide-sense stationary setting is usually approached via
frequency-domain methods, leading to linear time-invariant
system implementation. In this paper, we will also propose
a prediction-based scheme that implements the compression
phase using a time-domain single-letter, sequential processing.

A. Problem Formulation

Consider the discrete-time IB model illustrated in Fig. 1.
The real valued bivariate source

({Xt}, {Yt}) = . . . , (X−1,Y−1), (X0,Y0), (X1,Y1), . . . , (1)

is a bivariate stationary Gaussian random process, with
marginal power spectral densities SX(f), SY(f), and cross-
power spectrum SXY(f). The encoder observes Yn and maps
it to a compressed representation with an index M ∈ [1 : 2nC ].
The decoder recovers Zn from M. The compression strategy
PZ|Y is optimized to maximize the normalized mutual infor-
mation between Xn and Zn.

The considered jointly Gaussian bivariate stationary source
can be equivalently represented by linear time invariant filters
[9, Thm. 4.5.5], i.e., Yn = hn ∗Xn +Wn; where ∗ stands for
convolution operator, hn is the impulse response of the linear
system with transfer function

H(f) =
SXY(f)

SX(f)
, (2)

and Wn is an additive colored Gaussian noise with power
spectrum

SW(f) = SY(f)−
|SXY(f)|2

SX(f)
. (3)

The information bottleneck (IB) rate of a bivariate stationary
source with memory, which is given as a limit of normalized
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mutual information associated with vectors of source samples,
can be written as

Rib(C) = lim
n→∞

Rib
n (C;PXnYn), (4)

where

Rib
n (C;PXnYn) = sup

PZn|Yn

1

n
I(Xn;Zn)

subject to
1

n
I(Yn;Zn) ≤ C

(5)

is the normalized IB function for random vectors (Xn,Yn,Zn).
We will usually abbreviate Rib

n (C;PXnYn) as Rib
n (C). The

channel PZn|Yn which achieves this supremum subject to the
bottleneck constraint is termed an optimal test channel.

Contributions: Before understanding complex models
such as DNN, one must first understand the canonical models,
such as the Gaussian one. This is also a common theoretical
approach in machine learning. For example, there are many
works on two-layer neural networks, or even linear networks
(which are in some sense trivial since a concatenation of
linear operations is just a linear operation on its own). The IB
method provides a natural fidelity measure for modern source
coding applications. The standard rate-distortion problem for
Gaussian processes with least-squares loss has been consid-
ered in [14]. Thus, our problem extends previous works by
considering a more general distortion measure. Furthermore,
stochastic colored process stands as a good model for a general
source with continuous stream of output symbols, i.e. audio,
video, sensor output. Gaussian processes are a simple model
for such processes which are usually manageable for analytical
consideration.

We first state a “water filling” solution for the IB function
of a stationary bivariate Gaussian source in terms of its SNR
spectrum. Since IB is essentially a remote source coding with
log-loss distortion [3], [4], the resulting formula is similar
in spirit to the capacity formula of power-constrained inter-
symbol interference (ISI) channel with Gaussian noise [10],
[11], and the rate-distortion function of a stationary Gaussian
source [9]. The result above is derived from asymptotic
quantities of mutual information between Gaussian random
vectors in the frequency domain [12]. We next translate these
vector mutual information measures to scalar ones via linear
prediction. This parallels a result which states that the capacity
of the ISI channel is equal to the single letter mutual infor-
mation over a slicer embedded in a decision-feedback noise-
prediction loop [13], and similarly, that the rate-distortion
function equals the single letter mutual information over an
additive white Gaussian noise (AWGN) channel embedded
in a source prediction loop [14]. We show that a parallel
result holds for the IB rate Rib(C), which is equal to the
scalar mutual information over an AWGN channel embedded
in a source prediction loop, as shown in Fig. 3. This result
implies that Rib(C) can essentially be realized sequentially.
Finally, we consider a compound version of the IB problem
with Gaussian processes, in which the cross-spectrum of the
processes ({Xt}, {Yt}) is not fully specified, and it is only

known that the mutual information rate I({Xt}; {Yt}) ≥ C1

for some C1. In general, this problem is motivated by the
uncertainty of the correlation between {Xt} and {Yt}, and we
refer the reader to [15] for a more elaborate discussion. Here
we provide an explicit solution for this scenario.

Omitted proofs and other details are in the full version of
this paper [16].

B. Related Work

The vector Gaussian IB setting was first considered in [6].
It was shown that jointly Gaussian vectors triple X → Y → Z
is optimal [17], and a closed-form formula for the IB curve
was obtained. Linear operations can typically obtain optimal
solutions for the Gaussian setting. However, channel output
compression subject to squared-error distortion was shown to
be sub-optimal to the Gaussian IB setting [18]. The latter
issue was solved in [19] by adding a prefilter prior the rate-
distortion block. The discrete-time Gaussian process setting
was considered in [19] and [20].

For the jointly stationary bivariate source ({Xt}, {Yt}), the
Privacy Funnel (PF) rate [21] is defined by

Rpf (C) = lim
n→∞

Rpf
n (C;PYnZn), (6)

where

Rpf
n (C;PYnZn) = inf

PZn|Yn

1

n
I(Xn;Zn)

subject to
1

n
I(Xn;Yn) ≥ C

(7)

is the normalized PF function for random vectors
(Xn,Yn,Zn).

II. INFORMATION BOTTLENECK FOR GAUSSIAN
PROCESSES

In this section, we review and state results on IB for
jointly Gaussian random vectors and jointly Gaussian random
processes.

A. Review: IB for jointly Gaussian pair (X,Y)

We begin with a brief review of the basic setting in
which (X,Y) in (5) are jointly Gaussian random vectors.
Let X ∼ N (0,ΣX), Y ∼ N (0,ΣY) with cross-covariance
matrix ΣXY. Those bivariate random Gaussian vectors can
equivalently represented using a linear additive-noise form,
i.e.,

Y = HX+W, (8)

where H = ΣXYΣ−1
X and ΣW = ΣY − ΣT

XYΣ−1
X ΣXY. Let

OΓOT be the Singular Value Decomposition (SVD) of the
Signal-to-Noise Ratio (SNR) covariance matrix Σsnr, defined
by

Σsnr ≜ Σ
−1/2
W HΣXHTΣ

−1/2
W , (9)

with Γ = diag{γi}ni=1. The vector Gaussian IB function was
first determined in [6] (see also [19] and [22, Sec. 2], where
the trade-off parameter β is replaced here by 1+1/θ). We next
present this result with a structure that resembles the classical
rate-distortion function for Gaussian sources with memory [9,
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Thm. 4.5.3], where θ plays the role of the water-filling level
– First θ is chosen to satisfy the bottleneck constraint C, and
then the information rate is calculated. The importance of this
form of presentation is that it will be used in the next section
to obtain realizations in the time domain.

Lemma 1: The normalized IB rate (5) is achieved by a
jointly Gaussian triple (X,Y,Z) and is given by

Rib
n (C) =

1

2n

n∑
i=1

log

[
1 + γi
1 + θ

]+
, (10)

where θ is the water filling level chosen such that

1

2n

N∑
i=1

log
[γi
θ

]+
= C, (11)

with [x]+ ≜ max{1, x}, and {γi}ni=1 are the eigenvalues of
the SNR covariance matrix Σsnr.

B. IB for jointly Gaussian Processes

Equipped with the form of the IB function in Lemma 1, the
solution to the discrete-time processes setting follows from
Szegö’s theorem [12, Thm. 4.2]. While a related result with
filtered observation was first published in [19], in our approach
such assumption is not required.

Theorem 1: The IB rate (4) for Gaussian random processes
is given by

Rib(C) =
1

2

∫ 1/2

−1/2

log

[
1 + Γ(f)

1 + θ

]+
df, (12)

where we choose the water level θ so that the total rate is C,

C =
1

2

∫ 1/2

−1/2

log

[
Γ(f)

θ

]+
df, (13)

and Γ(f) is the SNR spectrum, defined by

Γ(f) =
|H(f)|2SX(f)

SW(f)
=

|SXY(f)|2

SX(f)SY(f)− |SXY(f)|2
. (14)

We may define the distortion spectrum [9] as

Dθ(f) =

{
θ, Γ(f) > θ

Γ(f), otherwise
(15)

and then Thm. 1 can be equivalently stated as

Rib(C) =
1

2

∫ 1/2

−1/2

log

[
1 + Γ(f)

1 +Dθ(f)

]
df, (16)

and

C =
1

2

∫ 1/2

−1/2

log

[
Γ(f)

Dθ(f)

]
df. (17)

As immediate consequence of Thm. 1 is that the optimal
channel from Yn to Zn can be described in a linear AWGN
form

Zn = h2,n ∗ (h1,n ∗ gn ∗ ωn ∗ Yn + Nn), (18)

where ωn, gn, h1,n and h2,n are impulse responses of a
noise-whitening filter, shaping filter, a suitable prefilter and

Whitening
Filter

1/
√
SW̃(f)

Shaping
Filter G(f)

Pre-filter
H1(f)

∑ Post-filter
H2(f)

+

Yn

Ỹn Y′
n Un Vn

Zn

Nn

Fig. 2: Forward channel realization.

postfilter respectively, whose absolute squared value frequency
responses are given by

|Ω(f)|2 =
1

SW(f)
, |G(f)|2 =

Γ(f)

1 + Γ(f)
, (19)

|H1(f)|2 = 1− D(f)

SY(f)
, H2(f) = H∗

1 (f), (20)

and Nn ∼ N (0, θ). The respective forward channel realization
is illustrated in Fig. 2.

Remark 1: The absolute frequency response of the shaping
filter G(f) is exactly the square root of the noncausal Wiener
filter. Thus, the shaping filter plays the role of denoiser in the
spirit of MMSE estimation of {Xt} from {Yt}.

III. REMOTE SOURCE CODING IN TIME DOMAIN VIA
PREDICTION

In this section, we consider the compression system illus-
trated in Fig. 3. This setting is motivated by the sequential
structure of differential pulse-code modulation (DPCM) [23],
which was initially proposed in order to compress highly
correlated sequences efficiently. The idea behind DPCM is
to translate the encoding of dependent source samples into a
series of independent encodings. The latter is accomplished by
linear prediction. The input source sample is predicted from
previously encoded samples at each instant. The prediction
error is encoded by a scalar quantizer and added to the
predicted value to form the new reconstruction. The prefilter
output, denoted Un, is fed to the central block, which generates
a process Vn according to the following recursion equations:

Ûn = g(Vn−1
n−L) (21)

Wn = Un − Ûn (22)
Qn = Wn + Nn (23)

Vn = Ûn + Qn, (24)

where Nn ∼ N (0, θ) is a zero-mean white Gaussian noise,
independent of the input process {Ut}, whose variance is equal
to the water level θ; and g(·) is some prediction function for
the input Un given the L past samples of the output process
(Vn−1

n−L).
The block from Un to Vn is equivalent to the configuration

of DPCM, with the DPCM quantizer replaced by the additive
Gaussian noise channel Qn = Wn + Nn. In particular, the
recursive structure implies that this block satisfies the well-
known “DPCM error identity”:

Vn = Un + (Qn −Wn) = Un + Nn. (25)
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g(Vn−1

n−L)
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Yn

Ỹn Y′
n Un Wn Qn Vn
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Ûn

Fig. 3: A predictive quantization scheme.

Namely, the output Vn is a noisy version of Un passed through
the AWGN channel Vn = Wn + Nn. Thus, the system of
Fig. 3 is equivalent to the forward channel implementation of
the Gaussian IB illustrated in Fig. 2.

The prediction function g(·) is chosen to be linear as in
DPCM, i.e.,

g(Vn−1
n−L) =

L∑
i=1

aiVn−i, (26)

where {ai}Li=1 are chosen to minimize the mean-squared
prediction error

σ2
L = min

{ai}n
i=1

E

[Un −
L∑

i=1

aiVn−i

]2 . (27)

Since Vn is noisy version of Un, g(·) is termed as a “noisy
predictor”. If {Ut} and {Vt} are jointly Gaussian, then the
optimal predictor of any order is linear, thus, σ2

L is also the
MMSE in estimating Un from Vn−1

n−L. Clearly, this MMSE is
nonincreasing with the prediction depth L, and it converges as
L goes to infinity to σ2

∞ = limL→∞ σ2
L, which is the optimal

predictor of Un based on all past observations of V−
n .

Remark 2: Note that σ2
∞ is closely related to the entropy

power. Indeed, let {Xt} be a Gaussian source with power
spectrum SX(f), then the entropy power is defined by

Pe(X) ≜ exp

(∫ 1/2

−1/2

log (S(f)) df

)
. (28)

According to Wiener’s spectral-factorization theory, the en-
tropy power is the MMSE of one-step prediction of Xn from
its infinite past, i.e.,

Pe(X) = inf
{bi}

E

[(
Xn −

∞∑
i=1

biXn−i

)]
. (29)

The difference here is that we consider noisy prediction in
(27).

The compression scheme in Fig. 3 is based on a correspond-
ing scheme for standard Gaussian rate-distortion problem with
MMSE distortion, developed in [14]. The main difference is
that the problem considered here is essentially a remote source
coding problem with log-loss. In particular, this affects the
realization of the shaping filter and the derivation of mutual
information fidelity. Our result is as follows:

Theorem 2: Let a bivariate Gaussian stationary source

({Xt,Yt}) with SNR spectrum Γ(f) be given, and assume
that g(·) achieves the optimum infinite order prediction error
σ∞. If the quantizer in Fig. 3 is replaced by an AWGN channel
then the system of Fig. 3, satisfies

R(C) =
1

2

∫ 1/2

−1/2

log

[
1 + Γ(f)

1 +Dθ(f)

]
df, (30)

where Dθ(f) is as defined in (15), and θ is chosen such that

C =
1

2

∫ 1/2

−1/2

log

[
Γ(f)

Dθ(f)

]
df. (31)

Thm. 2 assumes that the quantizer operation is replaced
by Gaussian noise. The discrepancy between the ideal Gaus-
sian noise setting and the practical quantizer setting, can
be resolved using Vector Quantizer (VQ) and interleaving.
Utilizing high-dimensional lattice code for quantization results
in nearly Gaussian quantization noise [24]. However, a direct
application of a VQ is not well-suited to the sequential
prediction scheme of Fig. 3. This problem can be resolved
by adding a spatial dimension to the problem, motivated
by interleaving for ISI channels [25]. Consider the scheme
illustrated in Fig. 4. The input sequence to the encoder is
rearranged in matrix form. The columns, whose elements are
assumed to be memoryless, are used as the inputs to VQ.
The rows on the other hand are fed to the prediction loop.
Additional discussion on this technique can be found in [14].

Remark 3: While the central block of the system is se-
quential and hence causal, the whitening filter, shaping filter
and the pre- and post filters are noncausal and therefore their
realization requires delay. In particular, since h2,n = h1,−n, if
one of the filters is causal then the other must be anticausal.
The problem is that usually the filter’s response is infinite,

Start

End

Fig. 4: Source Interleaving Scheme
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therefore, the required delay is also unbounded. Indeed, the
desired spectrum of the filters may be approximated to any
order using filters of sufficiently large but finite delay δ. Then,
Thm. 2 holds in general in the limit of infinite delay.

IV. COMPOUND INFORMATION BOTTLENECK

Following [15] we next consider the compound information
bottleneck (COMIB) function of a bivariate stationary source
with memory. Here, the COMIB is given as a limit of nor-
malized mutual information associated with vectors of source
samples. For a real valued bivariate source ({Xt,Yt}) (see (1)),
normalized PF constraint C1, and normalized IB constraint C2,
the COMIB rate can be written as

Rcomib(C1, C2) = lim
n→∞

Rcomib
n (C1, C2), (32)

where

Rcomib
n (C1, C2) = sup

PZn|Yn
inf

PXnYn

1

n
I(Xn;Zn) (33)

is the corresponding finite vector Gaussian COMIB func-
tion. The optimization in (33) is over the sets {PXnYn} and
{PZn|Yn}, satisfying 1

nI(X
n;Yn) ≥ C1 and 1

nI(Y
n;Zn) ≤

C2, respectively.
A simple way to obtain solution to (32) is by establishing

a saddle point property. We briefly remind the reader this
property as it will be used in the proof.

Lemma 2 (Optimality of Saddle Point [26, Sec. 5.4.2]): Sup-
pose there exists a saddle point (w̃, z̃), satisfying f(w̃, z̃) =
infw∈W f(w, z̃) and f(w̃, z̃) = supz∈Z f(w̃, z), then

f(w̃, z̃) = sup
z∈Z

inf
w∈W

f(w, z). (34)

Next, we consider the respective dual PF problem (7) for
Gaussian random variables. The problem in (6) is rather
delicate – e.g., if (Y,Z) are scalar jointly Gaussian random
variables, the PF rate is zero since one can use the channel
from Y to X to describe the less significant bits of Y [27].
Thus, additional constraints should be imposed here to have a
non-trivial rate, as stated in the following theorem.

Lemma 3: Suppose X → Y → Z constitute a jointly
Gaussian vector Markov chain with positive definite marginal
covariance matrices ΣX, ΣY, and ΣZ respectively, and the
cross-covariance matrix of Z and Y is given by ΣZY. Let
ΣYX be the cross-covariance matrix of the optimal solution to
(7). Further, let U1ΦV

T
1 be the Singular Value Decomposition

(SVD) of Σ
−1/2
Y ΣYXΣ

−1/2
X and U2ΨV T

2 be the SVD of
Σ

−1/2
Z ΣZYΣ

−1/2
Y . Then, the underlying Gaussian PF problem

(7) can be relaxed to the following optimization problem:

RPF
n (C1) = min

U1∈U(n),{ϕi}
− 1

2n
log det(I−UT

1 Φ2U1V
T
2 Ψ2V2)

subject to − 1

2n

n∑
i=1

log(1− ϕ2
i ) = C1,

(35)
where U(n) is the set of all n×n unitary matrices (the unitary
group), and {ϕi} are the entries of the diagonal matrix Φ.

Note that in contrast to Lemma 1, we do not have a
closed form-solution for the general Gaussian PF problem,
and additional numerical optimization is needed. However,
for the compound setting we obtain an exact solution which
incorporates a white SNR spectrum. Such spectrum has a
constant intensity over the entire bandwidth of the signal.

Theorem 3: Suppose that (32) is evaluated for the scenario
where {Xt} and {Yt} are jointly Gaussian random processes
with marginal power spectral densities SX(f) and SY(f)
respectively. The resulting optimal channel from Xn to Zn

has a linear form, i.e.,

Yn = hn ∗ Xn +Wn, (36)
Zn = gn ∗ Yn + Vn, (37)

where: hn and gn are impulse responses of liner time-invariant
filters, whose absolute squared value frequency responses are
given by:

|H(f)|2 =
1

1 + γ

SY(f)

SX(f)
, |G(f)|2 =

1

1 + λ
, (38)

SW(f) =
1

1 + γ

SY(f)

SX(f)
, SV(f) =

1

1 + λ
; (39)

γ = 22C1−1; and λ = 22C2−1. Therefore, the optimal double-
sided SNR spectrum is white. The corresponding oblivious rate
is

Rcomib(C1, C2) = −1

2
log[1−(1−2−2C1)(1−2−2C2)]. (40)

This theorem is obtained by applying a saddle-point prop-
erty from Lemma 2 on Lemma 1 and Lemma 3 and has the
following practical implication: The most robust approach in
case there is no information regarding the structure of the
observed signal and noise is to assume the input is white.

V. CONCLUDING REMARKS

In this paper, we have addressed the jointly Gaussian
process IB problem. A water-filling type solution has been
obtained. Then, a linear prediction scheme that attains the IB
was proposed and analyzed. Finally, a closed-form solution
has been given to a compound version of the IB for Gaussian
processes.

Future research directly related to the results of this paper
calls for further investigating single-letter quantization algo-
rithms with information-theoretic metrics. In addition, it would
be interesting to consider the IB and PF problems, when the
constraint is not I(Y;Z) ≤ C, but H(Z) ≤ C, as also done in
[20]. Then the transformation Y → Z is known to be discrete.
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