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ABSTRACT

Artificial Intelligent (AI) tools can be useful to address model

deficits in the design of communication systems. However,

conventional learning-based AI algorithms yield poorly cal-

ibrated decisions, unabling to quantify their outputs uncer-

tainty. While Bayesian learning can enhance calibration by

capturing epistemic uncertainty caused by limited data avail-

ability, formal calibration guarantees only hold under strong

assumptions about the ground-truth, unknown, data genera-

tion mechanism. We propose to leverage the conformal pre-

diction framework to obtain data-driven set predictions whose

calibration properties hold irrespective of the data distribu-

tion. Specifically, we investigate the design of baseband de-

modulators in the presence of hard-to-model nonlinearities

such as hardware imperfections, and propose set-based de-

modulators based on conformal prediction. Numerical results

confirm the theoretical validity of the proposed demodulators,

and bring insights into their average prediction set size effi-

ciency.

Index Terms— Calibration, Conformal Prediction, De-

modulation

1. INTRODUCTION

Artificial intelligence (AI) models typically report a confi-

dence measure associated with each prediction, which reflects

the model’s self-evaluation of the accuracy of a decision. No-

tably, neural networks implement probabilistic predictors that

produce a probability distribution across all possible values of
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Fig. 1. QPSK demodulation with a demodulator trained using

a limited number of pilots (gray symbols): (a) Constellation

symbols (colored markers), optimal hard prediction (dashed

lines), and model trained using the few pilots (solid lines).

Accuracy and calibration of the trained predictor depend on

the test input (gray square). (b) Probabilistic predictors ob-

tained from the trained model (solid bars) and optimal pre-

dictive probabilities (dashed bars), with thick line indicating

the hard prediction. (c) Set predictors output a subset of the

constellation symbols for each input.

the output variable. As an example, Fig. 1 illustrates the oper-

ation of a neural network-based demodulator [1, 2, 3], which

outputs a probability distribution on the constellation points

given the corresponding received baseband sample. The self-

reported model confidence, however, may not be a reliable

measure of the true, unknown, accuracy of the prediction, in

which case we say that the AI model is poorly calibrated.

Poor calibration may be a substantial problem when AI-based

decisions are processed within a larger system such as a com-

munication network.

Deep learning models tend to produce either overconfi-

dent decisions when designed following a frequentist frame-

work [4]; or else calibration levels that rely on strong as-

sumptions about the ground-truth, unknown, data generation

mechanism when Bayesian learning is applied [5, 6, 7, 8, 9,

10]. This paper investigates the adoption of conformal pre-

diction (CP) [11, 12, 13] as a framework to design provably

well-calibrated AI predictors, with distribution-free calibra-

tion guarantees that do not require making any assumptionIC
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about the ground-truth data generation mechanism.

Consider again the example in Fig. 1, which corresponds

to the problem of designing a demodulator for a QPSK con-

stellation in the presence of an I/Q imbalance that rotates and

distorts the constellation. The hard decision regions of an op-

timal demodulator and of a data-driven demodulator trained

on few pilots are displayed in panel (a), while the correspond-

ing probabilistic predictions for some outputs are shown in

panel (b). Depending on the input, the trained probabilistic

model may result in either accurate or inaccurate hard pre-

dictions, whose accuracy is correctly or incorrectly charac-

terized, resulting in well-calibrated or poorly calibrated pre-

dictions. Note that a well-calibrated probabilistic predictor

should provide output probabilities close to the optimal pre-

dictor (dashed lines in panel (b)). Importantly, accuracy and

calibration are distinct requirements.

CP leverages probabilistic predictors as a starting point to

construct well-calibrated set predictors. Instead of producing

a probability vector (as in Fig. 1(b)), a set predictor outputs

a subset of the output space (see Fig. 1(c)). A set predic-

tor is well-calibrated if it contains the correct output with a

pre-defined probability selected by the system designer. This

paper introduces CP-based demodulators, obtaining set pre-

dictors that satisfy formal calibration guarantees that hold ir-

respective of the ground-truth, unknown, distribution. The

proposed approach is particularly relevant in practical situa-

tions characterized by a limited number of pilots, in which

characterizing uncertainty is of critical importance.

In the rest of the paper, we first define the problem and

present preliminaries in Sec. 2. Then, we introduce CP-based

set predictors in Sec. 3, and describe experiments and conclu-

sions in Sec. 4. For reproducibility purposes, we have made

our code publicly available1.

2. PROBLEM DEFINITION

2.1. Channel Model

Following the example in Fig. 1, we consider a communica-

tion link subject to phase fading and to unknown hardware

distortions at the transmitter side [1, 14]. Our goal is to de-

sign a well-calibrated data-driven set demodulator based on

the observation of a few pilots. We follow the unconventional

notation of denoting as y[i] the i-th transmitted symbol, and as

x[i] the corresponding received sample. This will allow us to

write expressions for the demodulator in a more familiar way,

with x representing the input and y the output. Each frame

consists ofN pilots symbols and data symbols. The pilots de-

fine a data set D = {z[i]}Ni=1 of N examples of input-output

pairs z[i] = (x[i], y[i]) for i = 1, . . . , N , which is available

to the receiver for the design of the demodulator.

Each transmitted symbol y[i] is drawn uniformly at ran-

dom from a given constellation Y [15]. For any given frame,

1https://github.com/kclip/cp4wireless

the received sample x[i] can be written as

x[i] = eȷψψψfIQ(y[i]) + v[i], (1)

for a random phase ψψψ ∼ U[0, 2π), where the additive noise is

v[i] ∼ CN (0, SNR−1) for a given signal-to-noise ratio level

SNR. Furthermore, the I/Q imbalance function [16] is

fIQ(y[i]) = ȳI[i] + ȷȳQ[i], (2)

where
[

ȳI[i]
ȳQ[i]

]

=

[

1 + ϵϵϵ 0
0 1− ϵϵϵ

] [

cosδδδ − sinδδδ
− sinδδδ cosδδδ

] [

yI[i]
yQ[i]

]

,

(3)

with yI[i] and yQ[i] being the real and imaginary parts of the

modulated symbol y[i]; and ȳI[i] and ȳQ[i] standing for the

real and imaginary parts of the transmitted symbol fIQ(y[i]).
The channel parameters ψψψ, ϵϵϵ, and δδδ are generated indepen-

dently in each frame from a common distribution.

2.2. Probabilistic Predictors

Probabilistic predictors implement a parametric conditional

distribution model p(y|x, ϕ) on the output y ∈ Y given the

input x ∈ X , where ϕ ∈ Φ is a vector of model parame-

ters. Given the training data set D consisting of the N pilots

in a frame, frequentist learning produces an optimized sin-

gle vector ϕ∗D, while Bayesian learning returns a distribution

q∗(ϕ|D) on the model parameter space Φ [17, 18]. We de-

note as p(y|x,D) the resulting optimized predictive distribu-

tion which is either p(y|x, ϕ∗D) for frequentist learning, or the

ensemble Eϕϕϕ∼q∗(ϕ|D)[p(y|x,ϕϕϕ)] for Bayesian learning.

2.3. Set Predictors

A set predictor is defined as a set-valued function Γ(·|D) :
X → 2Y that maps an input x to a subset of the output

domain Y based on data set D. We denote the size of the

set predictor for input x as |Γ(x|D)|. As illustrated in the

example of Fig. 1, it depends in general on input x, and can

be taken as a measure of the uncertainty of the set predictor.

The performance of a set predictor is evaluated in terms of

coverage and inefficiency. Coverage refers to the probability

that the true label is included in the predicted set; while ineffi-

ciency refers to the average size |Γ(x|D)| of the predicted set.

There is clearly a trade-off between two metrics.

Formally, the coverage level of set predictor Γ is the prob-

ability that the true output y is included in the prediction set

Γ(x|D) for a test pair z = (x, y). This can be expressed

as coverage(Γ) = P
(

y ∈ Γ(x|D)
)

, where the probabil-

ity P(·) is taken over the ground-truth joint distribution of the

involved random variables. When setting as target design a

miscoverage level α ∈ [0, 1], the set predictor Γ is said to be

1− α-valid if

coverage(Γ) = P
(

y ∈ Γ(x|D)
)

≥ 1− α. (4)
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It is straightforward to design a valid set predictors even

for the restrictive case of miscoverage level α = 0 by pro-

ducing the full set Γ(x|D) = Y for all inputs x. One should,

therefore, also consider the inefficiency of predictor Γ. The

inefficiency of set predictor Γ is defined as the average pre-

dictive set size

inefficiency(Γ) = E
[

∣

∣Γ(x|D)
∣

∣

]

, (5)

where the average is taken over the data set D and the test

pair (x,y) following their exchangeable joint distribution

p0(D, (x, y)).
We note that the coverage condition (4) is practically rel-

evant if the learner produces multiple predictions using inde-

pendent data set D, and is tested on multiple pairs (x, y). In

fact, in this case, the probability in (4) can be interpreted as

the fraction of predictions for which the set predictor Γ(x|D)
includes the correct output. This situation reflects well the set-

ting of interest in which a different demodulator is designed

for each frame.

2.4. Naı̈ve Set Predictors from Probabilistic Predictors

Given a probabilistic predictor p(y|x,D), one can construct a

set predictor by relying on the confidence levels reported by

the model. To this end, one can construct the smallest sub-

set of the output domain Y that covers a fraction 1 − α of

the probability designed by model p(y|x,D) given an input

x. Given that probabilistic predictors are typically poorly cal-

ibrated, this approach generally does not satisfy condition (4)

for the given desired miscoverage level α.

3. CONFORMAL PREDICTION

3.1. Nonconformity Scores

Conformal prediction relies on some form of validation to cal-

ibrate a naı̈ve predictor. For any given test input x, a value

y′ ∈ Y for input x is included in the prediction set if (x, y′)
“conforms” well with the validation data. To formalize CP,

we define a nonconformity (NC) score as a function that maps

a pair z = (x, y) and a data set D with N samples to a real

number, measuring how dissimilar the data point z is to the

data points in the fitting data set D. An NC score must be

invariant to permutations of the samples in the data set D.

Given a trained probabilistic model p(y|x,D), which may

be frequentist or Bayesian, an NC score can be obtained as the

log-loss

NC(z = (x, y)|D) = − log p(y|x,D) (6)

as long as the training algorithm used to derive the predictor

p(y|x,D) is invariant to permutations of the data set D. Note

that (6) measures how poorly the sample (x, y) conforms with

respect to the data set D via the trained model p(y|x,D): If

the sample (x, y) is “similar” to the points in the set D, the

log-loss will tend to be small.

3.2. Validation-Based Set Predictors

Validation-based (VB)-CP set predictors partition the avail-

able set D = Dtr ∪Dval into training set Dtr with N tr samples

and a validation set Dval with N val = N −N tr samples.

Given a test input x, for each candidate output y′ in Y , the

NC score NC((x, y′)|Dtr) is evaluated by using the training

data Dtr. The NC score NC((x, y′)|Dtr) is compared to the

NC scores NC(zval[i]|Dtr) evaluated on all points zval[i], i =
1, . . . , N val in the validation set Dval. If the pair (x, y′) has a

lower (or equal) NC score than a portion of at least ⌊α(N val+
1)⌋/N val of the validation NC scores, then the candidate label

y′ is included in the VB prediction set ΓVB
α (x|D). Accord-

ingly, the VB-CP set predictor is obtained as

ΓVB
α (x|D) =

{

y′ ∈ Y
∣

∣

∣
NC((x, y′)|Dtr) (7)

≤ Q1−α

(

{NC(zval[i]|Dtr)}N
val

i=1

)

}

.

where the (1 − α)-empirical quantile Q1−α

(

{r[i]}Ni=1

)

for

a set of N real values {r[i]}Ni=1 is the
⌈

(1 − α)(N + 1)
⌉

th

smallest value of the set {r[i]}Ni=1 ∪ {+∞}.

It is known from [11] that the VB-CP set predictor sat-

isfies the coverage condition (4). In terms of computational

complexity, given N te test inputs, predictor p(y|x,D) should

be trained only once based on the training set Dtr. This is fol-

lowed byN te|Y|+N val evaluations of the NC scores to obtain

the N te set predictions for all test points.

3.3. Cross-Validation-Based Set Predictors

VB-CP has the computational advantage of requiring a single

training step, but the split into training and validation data

causes the available data to be used in an inefficient way,

while may in turn yield set prediction with large average size

(5). Unlike VB-CP methods, cross-validation-based (CV) CP

methods train multiple models, each using a subset of the

available data set. As a result, CV-CP increases the compu-

tational complexity as compared to VB-CP, while generally

reducing the inefficiency of set prediction [19, 20]. Given

a data set D = {z[i]}Ni=1 of N points, the CV predictor

fits N models, one for each of the leave-one-out (LOO) sets
{

D\{z[i]}
}N

i=1
that exclude one of the points z[i], which will

play the role of validation [19, 20]. Then, prediction on an in-

put x is done by evaluating the NC scores NC
(

(x, y′)
∣

∣D \

{z[i]}
)

of all prospective pairs (x, y′), using all available N
fitted models based on N LOO sets D \ {z[i]}, as well as

the NC scores NC
(

z[i]
∣

∣D \ {z[i]}
)

for all validation data

points. Accordingly, by including a candidate y′ ∈ Y if the

NC score for (x, y′) is smaller (or equal) than a portion of

at least ⌊α(N val + 1)⌋/N val of the validation data points, the

CV-CP produces set predictor

ΓCV
α (x|D) =

{

y′ ∈ Y

∣

∣

∣

∣

N
∑

i=1

✶

(

NC
(

(x, y′)
∣

∣D \ {z[i]}
)

(8)
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≤ NC
(

z[i]
∣

∣D \ {z[i]}
)

)

≥ ⌊α(N + 1)⌋

}

,

with indicator function ✶(·) (✶(true) = 1 and ✶(false) = 0).

K-fold CV is a generalization of CV-CP set predictors

that strike a balance between complexity and inefficiency

by reducing the total number of model training phases to K
where K ∈ {2, . . . , N} and N/K is an integer. It then trains

K models over leave-fold-out data sets, each of size N −K,

and as validation uses the entire N data set [19].

By [19, Theorms 1 and 4], CV-CP (8) satisfies the inequal-

ity

P
(

y ∈ ΓCV
α (x|D)

)

≥ 1− 2α (9)

and its K-fold version K-CV satisfies the condition

P
(

y ∈ ΓK-CV
α (x|D)

)

≥ 1− 2α−min
{

2(1−1/K)
N/K+1 , 1−K/NK+1

}

.

(10)

Therefore, validity for both schemes is guaranteed for the

larger miscoverage level of 2α. Accordingly, one can achieve

miscoverage level of α, satisfying (4), by considering the CV-

CP set predictor with half of the target level α. That said, nu-

merical evidence reported in [19] and [20] suggests that this

is practically unnecessary.

4. EXPERIMENTS AND CONCLUSIONS

As in [1, 14], demodulation is implemented via a neural net-

work model p(y|x, ϕ) consisting of a fully connected network

with three hidden layers with ReLU activations, and softmax

activation for the last layer. The amplitude and phase imbal-

ance parameters in (1)-(3) are independent and distributed as

ϵϵϵ ∼ Beta(ϵ/0.15|5, 2) and δδδ ∼ Beta(δ/15◦|5, 2), respec-

tively [1]. The SNR is set to 5 dB. The NC score (6) is eval-

uated as follows. For frequentist learning, the trained model

ϕD is obtained via 120 gradient descent update steps for the

minimization of the cross-entropy training loss with learning

rate 0.2. For Bayesian learning, we implemented stochastic

gradient Langevin dynamics (SGLD) updates with burn-in

period of 100, ensemble size 20, and learning rate 0.2 [21].

We compare the naı̈ve set predictor described in Sec. 2.4,

which provides no formal coverage guarantees, with the CP

set demodulation methods introduced in this work. We target

the miscoverage level α = 0.1.

Fig. 2 shows the empirical coverage level and Fig. 3 shows

the empirical inefficiency, both evaluated on a test set with

100 samples, as function of the sizeN of the available data set

D. We further average the results for 50 independent frames,

each corresponding to independent draws of pilot and data

symbols from the ground truth distribution. From Fig. 2, we

first observe that the naı̈ve set predictor, with both frequentist

and Bayesian learning, does not meet the desired coverage

level in the regime of a small number N of available samples.

In contrast, confirming the theoretical guarantees presented in
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Fig. 2. Coverage for naı̈ve predictor, validation-based (VB)

conformal predictor (7), cross-validation-based (CV) confor-

mal predictor, (8), and the K-fold CV (K-CV) predictor as

a function of the number of pilots N . The NC scores are

evaluated either using frequentist learning (dashed lines) or

Bayesian learning (solid lines).

12 16 20 24 28 32 36 40 44 48
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Fig. 3. Average set prediction size (inefficiency) for the same

setting of Fig. 2.

Sec. 3, all CP methods provide coverage guarantees, achiev-

ing coverage rates above 1− α. From Fig. 3, we observe that

the size of the prediction sets, and hence the inefficiency, de-

creases as the data set size, N , increases. Furthermore, due to

their efficient use of the available data, CV andK-CV predic-

tors have a lower inefficiency as compared to VB predictors.

Finally, Bayesian NC scores are generally seen to yield set

predictors with lower inefficiency, confirming the merits of

Bayesian learning in terms of calibration.

Overall, the experiments confirm that all the CP-based

predictors are all well-calibrated with small average set pre-

diction size, unlike naı̈ve set predictors that built directly on

the self-reported confidence levels of conventional probabilis-

tic predictors.
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